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Abstract

Orders management systems (OMS) used in modern retail environments must be capable of
performing a high volume of transactions, possess elastic scalability, and be consistent across
bursty workloads. A combination of a cloud-native design and distributed NoSQL databases
provide a good basis to these needs, but also present non-trivial data modeling limitations. The
2-GB logical partition limit imposed by Azure Cosmos DB is one of the most serious
constraints and can cause partition hot-spots and unrestricted document increase of naively-
modelled schemas. The paper provides a new architecture of cloud-native OMS, which designs
systematically within the same constraint by adhering to schema normalized strictly, per-legal
decomposition of data, and domain-oriented segmentation. The data on orders are partitioned
into constrained aggregates in line with the business events and allow controlled partition
growth and predictable scaling behavior. A more event-based interaction model also further
separates order transitions off of persistent storage issues and enhances scale and resiliency.
The proposed architecture illustrates how business domain alignment with appropriate Cosmos
DB partitioning semantics can guarantee the scalability, maintainability, and sustainability of
business operations in insane scale OMS deployments.

Keywords: Cloud-native architecture, Retail order management systems, Azure Cosmos DB,
Logical partition limit, Schema normalization, Domain-driven design, Event-driven systems,
and Scalable data modeling.

1. INTRODUCTION

Retail businesses are progressively utilizing electronic mediums to accommodate customer-
made orders through online, cellular, and in-store platforms. Order Management System
(OMS) serves as the main workhorse that handles order capture, inventory, fulfilment
orchestration, payment status, and post-order lifecycle order cancellations and returns [1]. The
traditional monolithic design of OMS is not scalable, available, or agile, as the volume of
transactions rises and customers demand real-time responsiveness. This has spurred the broad
usage of cloud-native designs which focus on the aspects of elasticity, fault tolerance, and
constant evolution.

1.1 Cloud-native OMS Requirements

A cloud native OMS should be able to deal with unpredictable traffic patterns, seasonal peaks
and geographically dispersed users with low latency and high consistency guarantees being
made at the business level [2]. Microservices, container orchestration and managed cloud
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databases make it possible to scale out components of functions and release at a very fast rate.

Nevertheless, these advantages also introduce new design constraints especially in data
ownership, and boundary of transactions and long-lived order lifecycles that cut across services
and states [3]. A well-designed OMS thus needs to be very keen to align business processes
with the underlying platforms of data.

1.2 Challenges in data modeling in Distributed Databases

Horizontal scalability and high availability of distributed NoSQL databases have often been
adopted in cloud native systems. These systems unlike the traditional relational databases place
explicit constraints on organization constructs of data like partitions and documents. Retail
OMS workloads have the potential to store a plethora of historical information on an order such
as changes in status, updates on fulfilment, retried payment, and audit paths. Assuming that the
models are cumulative aggregates, these data insensitive may exceed storage capacity, lead to
uneven load allocation, and causes poor query responsiveness [4]. These are not operational
but instead architectural challenges, and they have to be considered during the design time.

1.3 Significance of Schema Design and Normalization

The schema design is very important in making sure that OMS data is scalable and maintainable
in the long run. Although denormalization is encouraged should the performance benefits of
the NoSQL be considered, it can be overdone resulting in an unchecked data explosion and
interconnecting unrelated lifecycle issues [5]. Applying normalization selectively and in accord
with access patterns is used to make the data size constrained, data update efficient, and help
to promote independent evolution of subdomains of the order. Schema choices in large-scale
retail systems have a direct relationship with cost, reliability, and non-disruptive migrations to

add new features.
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Figure 1: Illustration of E-Commerce Order Lifecycle Overview

The Figure 1 demonstrates the common lifecycle of an e-commerce order, which begins with
the process of customer order placement and processing payment, then inventory verification,
fulfilment, shipping, and delivering the final product. It further points out post-delivery
operations like returns and refund, and the multi-phase and end-to-end nature of the retail
processing of orders.

1.4 Partitioning and Lifecycle Awareness

Retail orders are not fixed but undergo an ever-changing process of formation and development
until the processes of satisfaction and completion [6]. Making an order one, monolithic piece
of data negatively affects this lifecycle complexity, and adds the likelihood of storage and
performance bottlenecks. Separating active and historical data or isolating high-churn
components does not require much memory and is crucial to partitioning strategies expressed

35



Phoenix: International Multidisciplinary Research Journal
Vol Is, No.1, Jan-March, 2021
ISSN: 2583-6897
in terms of business semantics which will enable long-term system health [7]. Lifecycle-

conscious data organization facilitates the predictive scaling and satisfies compliance, auditing,
and analytics necessities devoid of arousing transactional routes.

The following are the key contributions of this paper. To begin with, it presents a lifecycle-
aware cloud-native architecture to the retail Order Management Systems explicitly matching
business-domain boundaries to distributed database constraints. Second, it introduces a
normalized and but partition-aware type of data modeling technique that averts limitless
development of the order whilst still maintaining flexibility and scalability. Thirdly, the paper
gives an overall experimental analysis utilizing fifteen system-level performance metrics that
provide quantitative results pertaining to throughput, latency, data growth trend, reliability, and
cost effectiveness on large-scale retail settings.

A cloud-native retail OMS is designed to go beyond service decomposition and infrastructure
automation to encompass high-fidelity data modeling, part-and-whole architecting. The
interplay between interaction between order lifecycles, schema normalization and distributed
database constraints is a core to the construction of a system which can gracefully scale to
realistic retail workloads [8]. With an excellent conceptual base in these themes, a solid
architectural solution will be achieved to carry on with uninterrupted development, business
sustainability, and the changing needs of the business.

2. LITERATURE SURVEY

The literature and practice both point to three common issues facing cloud-native retail
systems: how to model changing order data in flexed stores, how to partition and distribute
workloads of high volume, and how to reliably change the state between distributed services.
The literature includes schema-evolution of document stores, the empirical studies of event-
driven systems, partitioning schemes, and platform-specific operational advice, and
microservice schemes of e-commerce [9]. These works taken together constitute a workable,
and theoretical, basis of knowledge of trade-offs between denormalization (to deliver read
performance), and normalization (to restrain limited growth), and they offer data-organization
strategies to ensure the prevention of hot partitions and unbounded aggregates.

Table 1: Comparative summary of approaches to scalable order-data management and
partitioning

Approach Focus Key findings Limitation

NoSQL schema- | Techniques for | Automated migration | Tooling complexity

evolution frameworks | managing schema | patterns and | and migration cost
change in | versioning lower | for large datasets
document  stores | operational risk
[10]

Event sourcing | Real-world event- | Versioned events and | High  operational

empirical study sourced  systems | upcasting are | burden for
and practices practical tactics for | rebuilding

evolution [11] projections
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Projection lag and

eventual
consistency
complications

Time-partitioned Partitioning Partitioning by time | Querying across
document modeling temporal data to | effectively  bounds | time partitions can
limit aggregate | per-partition growth | increase complexity
size [13]
Bounded-aggregate Splitting large | Limits per-item | Requires  careful
decomposition aggregates into | growth and reduces | join/lookup logic at
smaller hot-spot risk [14] query time
subdocuments
Hybrid relational- | Using RDBMS for | Best-of-both  trade- | Increased  system
NoSQL (polyglot) [15] | transactional data, | off for strong | complexity and
NoSQL for scale consistency and | integration
scalability overhead
Hierarchical/hierarchic | Compound keys to | Multi-component May complicate
al partition keys distribute load keys improve | transactional
distribution for some | boundaries and
workloads queries [16]
Append-only audit | Keep full history | Preserves auditability | Compaction
trails with compaction | then compact cold | while controlling | pipelines add
data [17] active dataset size operational
complexity
Microservice event | Loosely coupled | Improves scalability | Harder to
choreography services using | and independent | coordinate  cross-
events deplorability [18] service transactions
Materialized views for | Create specialized | Read  performance | View maintenance
query patterns [19] read  projections | significantly cost and staleness
for heavy queries | improved trade-offs

Schema-less design | Flexible schemas | Developer agility and | Risk of runaway

with  strict  access | but  constrained | fast iterations [20] document  growth

patterns queries when access
patterns change

Sharded document | Store large blobs | Avoids huge | Extra  joins/reads

references (pointer | separately and | documents and keeps | and consistency

model) reference them | partitions small considerations

[21]

Controlled De-normalize for | Balances Complexity in

denormalization with | reads and purge | performance and | ensuring data

TTL stale copies storage via lifecycle | freshness [22]

policies
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The table 1 summarizes solutions to the problem of controlling data growth and load balancing

in scalable order-management systems: schema-evolution tooling, event-driven solutions (such
as CQRS/event sourcing), time-based partitioning, limited-aggregate decomposition as well as
combined storage techniques [23]. The intent behind the design, the key advantage (such as
limited scalability or lower read latency) is put next to the real restriction that practitioners will
have to bear; possibly, uglier implementation and suboptimal query behavior as also
compromised consistency. The comparisons shedding light on these trade-offs in engineering
are repeated where we limit the size of the partition and maintain the performance level.

2.1 Research gap

Even though the background literature has discussed schema migration, event-driven patterns,
and partitioning strategies, there are few studies that systematically benchmark these strategies
as a combined approach in a retail OMS environment where long liveliness orders, auditability
as well as high churn subcomponents coexist [24]. There is sparse empirical evidence in the
form of comparative results to assess the costs of operation, latency, and partition growth
characteristics under realistic retail load. Specifically, maps of business-domain boundary
(order, fulfilment, payment, returns) directly down to partitioning and normalization patterns,
and strategies of live system migration are not well studied.

The current literature provides a profuse collection of strategies schema-evolution models,
event-sourcing benchmarks, time and hierarchical division, and hybrid storage models and can
guide the design of scalable retail order systems. The combination of these tactics and the
assessment of their combined impact on partition limits, operational cost, and query complexity
is research prevalent, however. The next steps in work should be the integrated analysis and
prescriptive patterns of connecting usual OMS areas with tangible prescriptions and
partitioning.

3. PROPOSED METHODOLOGY

The suggested solution outlines a cloud-native architectural paradigm of retail Order
Management System (OMS) that is clearly aligned with the operational restrictions of
distributed NoSQL systems, specifically, logical partition size constraints and schema
evolution pressure. Instead of considering these limitations as implementation details that
follow the architecture and data-modeling decisions, the approach integrates them into the main
architectural and data-modeling choices. The aim is to make sure the order data is bounded,
scalable, and maintainable throughout entails long lasting order lifecycles, high transaction
volumes, and ongoing business evolution. This is done through the integration of domain-based
data decomposition, normalized schema design, life-cycle aware partitioning, and event-
coordinated, and avoiding all through formal data and process abstractions.

The suggested architecture presupposes its implementation on a managed cloud infrastructure
that can have elastic computers and storage capabilities. It is assumed to be a distributed
NoSQL database that provides logical partitioning, and horizontal scalability. An inter-service
communication has an event-driven model and consists of eventual consistency across services,
and strong consistency across domain aggregates. There is an independent assumption that each
service will scale according to the workload requirements.
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3.1 Architectural Overview

The OMS is arranged in the form of a network of loosely coupled cloud-native services, each
representing a specific business capability, including the order capture, orchestration of
payment, orchestration of fulfilment, and post-order management. Every service is the owner
of its data and stores it separately in a distributed database. The scope of data ownership is
established based on the domain-driven approach, meaning that one data object does not
expand indefinitely and out of context in different lifecycle phases. The database tier is
considered as a multi-tenant, horizontally partitioned system where scalability and ability to be
reliable is realized by distributing the data instead of aggregating it centrally.

3.2 Domain-Oriented Data Decomposition

Orders In retail systems change with time across many states. As opposed to the representation
of order as a monolithic document, the approach breaks down information that is related to
order into various bounded aggregates. An order can be modelled as logical entity O, which
consists of a collection of assembly of domain specific aggregates:

0= {Acore' Apayment: Afulfillment' Ashipment' Aaudit} (1)
Where every aggregate A; represents data that are pertinent to a particular concern only.

The magnitude of an aggregate A; at time t is such that:
Si(H = Z,-n;(lt) Sij )
Where s;; represents the size of the it record in aggregate i, and n;(t) represents the
accumulated number of records by time.
By enforcing:
Si(8) < Smax 3)

To ensure this, the system affirms that there exists no single aggregate with size beyond the
logical partition limit of Sy, ..
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Figure 2: Conceptual Workflow of a Distributed Retail Order Management Platform

The Figure 2 illustrates a processing chain of a cloud-native retail Order Management System.
The forwarding of customer requests is conducted via an API gateway to order capture and
validation, and then to organized domain services dealing with payment and fulfilment. One
propagates the state synchronously using an event bus and is partitioned between active and
historical order data dearest product. Lifecycle transition management leads to closure in an
orderly fashion and the audit logs and analytics fosters reporting and governance requirements.

3.3 Schema Normalization Strategy

The method embraces selective normalization to avoid the replication of data in aggregates. As
opposed to replicating monster-sized, nested structures, associations between similar entities
are done through references. As an illustration a fulfilments aggregate stores pointer to
shipments instead of storing shipment histories themselves. Formally, assuming that R;; is a

reference of aggregate A; to A;, then:

Ai = D; U {Ry;} 4)
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Where D; represents the local owned information. This lowers the rate at which A; grows so

that:

dsi dSmono
P ©)

Where S,;,on0 1S the size of the monolithic order document.

3.4 Lifecycle-Aware Partitioning

The partitioning is motivated by the semantics of the business as opposed to the inconvenience
of the technology. The aggregates are partitioned with the help of a partition key, which is based
on a fixed domain identifier, like order ID and lifecycle state. Let P, represent a partition based
on key k. The mapping function is:

f(A;) = Py (6)
Where the k; is selected to allocate the load in a way so that localized data is still together.

Lifecycle transitions are used to accomplish the relocation of data to prevent an endless
increase. Active order data is stored in partitions that are optimized to support high throughput
and polished or historical data is migrated to different partitions. Given that A, and A;, are write
rates of active and historical data, respectively, then:

A > Ay (7
Making sure that hot parts are kept small and reactive.
3.5 Event-Driven Coordination Model

The inter-service coordination is performed based on an event-driven model. The state changes
of an aggregate are associated with domain events Ey. The model of the event stream is shown
as:

E = {Ey,E,, ..., Ep} (8)

Where every event is half-way covenantal and time-based. Consumers are asynchronous and
they update their local aggregates without having a direct connection to the source service. This
decoupling is associated with the fact that the amplification of writes to aggregates does not
happen and failures are well isolated. Conceptually the global state of the system at time t is
reconstructed as:

G = Ui Ai() )
And does not need to be physically aggregated into a single data storage.
3.6 Consistency and State Management

The methodology would be biased towards eventual consistency at the system level and high
consistency at an aggregate level. Let C; denote consistency in aggregate A;. The system
enforces:

C; = strong, Vi (10)

and accepts:
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Cglobal = eventual (11)

This model is realistically based on distributed systems but ensures locally-based business
invariants. Idempotent event handling is used to guarantee that a state is not corrupted by being
delivered the same event multiple times. When an event Ey is executed m times, then the
resulting state Aj satisfies:

Al = A + A(Ey) (12)
only once, regardless of m.
3.7 Data Growth Control Mechanisms

In order to manage data growth further, the strategy separates between operational data that is
mutable and historical data that is immutable. The pruning of operational aggregates is
performed during lifecycle transitions and the historical aggregates are appended only and
transferred to cold partitions. The overall area covered by storage T is given as:

T = Zi Sflctive + Zj thistorical (13)

The system guarantees operational predictability by limiting S2°V®, and the growth of the
historical data is linear and isolated.

3.8 Query and Access Pattern alignment

Materialized views of normalized aggregates based on materialized views that are optimized
to particular access patterns are read models. Assuming Q is a query workload and V; a query

view, then:
Vq = gq(Al' Az, ...,An) (14)

Where g is a deterministic transformation function where q is a deterministic transformation.
Asynchronous updates of views are based on event response to ensure that there are no
unnecessary cross partition boundaries and scanning of large aggregates to support query.

3.9 Algorithm: Order Data Decomposition and Partition Management

This algorithm specifies operation steps that are to be adhered to by a cloud-native retail Order
Management System to handle orders, handle distributed data, and regulate lifecycle-driven
data expansion. The sequence focuses on the execution in an ordered manner, asynchronous
coordination, and limited persistence of data alongside scalability and reliability of the system.

e Accept client channel requests as order requests via API gateway.

e Authenticate order data received and create a distinctive order identifier.

e Stored core order information in the active order data store.

e Service triggered domain payment and fulfilment processing.

e After every domain transition, emit state-change events to the event bus.

e (Consume asynchronous to update the domain records of the corresponding events.
e Reports on logical partition used on active order data.

e Establish the lifecycle laws to complete or close orders.

e Move finished record of order to historical storage/ archive.
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e Audit events Record immutable compliance and traceable audit events.
e Optimize views with updates to support queries and reporting.
e Measures of performance and reliability Continuously gathers performance and
reliability measures.

The algorithm maintains a systematic sequence of orders that start with their creation and end
with their closure as well as data isolation, bounded growth of partitions, and asynchronous
coordination. The system can keep the performance and long-term scalability of distributed
retail environments predictable and organized by designing processing steps based on lifecycle
awareness and event propagation.

3.10 Fault Tolerance and Scalability Considerations

Fault tolerance is a result of isolation and not redundancy. Aggregates are not fixed; thus, the
failure of one service will not affect the entire system. F; is failure in service i. Radial constraint
It is restricted that the impact radius R(F;) is:

R(F;) € A; (15)

This containment is a feature that enables the scaling of the system horizontally of adding
partitions and services without the need to re-architecture the existing data. Elastic scaling
scales up and down responding to throughput by adding more partitions but not scale.

3.11 Security and Governance Alignment

Normalized and partitioned data structure make access control easier by matching permissions
with domain ownership. All aggregates have their own authorization policies and this ensures
that there is a minimization of risk of over-privilege. Audit aggregates represent unalterable
histories of events, being valuable to maintain compliance and traceability and not
contaminating operational partitions.

The proposed solution creates a principled process of developing cloud-native retail Order
Management Systems that can be scaled up without constrained partitions and varied business
needs. The knowledge of partition awareness, schema normalization, lifecycle semantics, and
event-driven coordination built into the base of the architecture ensures that the system will
have limited growth and data growth, predictable performance, and be maintainable over time.
The solution does not see distributed database constraints as constraints, but as first-class
design parameters that build resilient and scalable OMS architecture.

4. RESULTS

In this section, the authors provide a descriptive analysis of the cloud-native retail Order
Management System structure in the face of realistic transactional workloads. The testing
focuses on distributed system scalability, latency characteristics, data expansion management,
dependability, and cost-effectiveness. The performance is measured based on fifteen metrics
that are carefully selected and incorporated into the categories consisting of five metrics, as
each of them has the same unit of measurement to maintain consistency and interpretability.
The findings are contrasted with the existing OMS architecture prototypical models to identify
the architectural implications on system behavior.
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4.1 Experimental Setup

The experimental architecture is based on the model of a multi-channel retail OMS running on
a cloud-native architecture made up of independently scalable services that provide order

intake, payment coordination, fulfilments management, and lifecycle management. Persistence
is in a distributed NoSQL database and logical partitioned. Workloads model simulated
concurrent order generation, asynchronous delivery, delayed delivery, and long order history.
All architectures are deployed using the same compute and storage resources so that fairness
can be ensured. Measurements are taken in the long run implementation periods to obtain the

steady-state behavior.

4.2 Performance Metrics

Order Processing Throughput (OPT) is an indicator of the quantity of customer orders that
have been completely run through the system in one second. It indicates the processing
capability when the total load is operated with transactional workloads.

Write Throughput (WT) is a measure of the successful write operations that are put in place
of data store. It refers to the capacity of the system to maintain high frequency state
changes and lifecycle alterations.

Read Throughput (RT) is a ratio of what read requests were served every second based on
both historical and operating data. It measures query scalability, path read efficiency.
Average End to End Latency (AEL) does record the average period between request and
the completion of response. It shows general user perceived responsiveness of the system.
95th-Percentile Latency (L95) is the latency threshold under which ninety five percent of
the requests are satisfied. It brings out tail-latency performance in peak load conditions.
Event Propagation Delay (EPD) refers to the time interval between sending an emitted
domain event and the time it is used up. It defines asynchronous efficiency of the
coordination among services.

Active Partition Growth Rate (APGR) is the rate of growth of the size of the active and
up-to-date partitions of data. It implies the efficiency of data binding and data lifecycle
storage.

Historical Data Growth Ratio (HDGR) is the rate of accumulation of order data that has
been completed or archived. It portrays durable storage practice and archivism
effectiveness.

Aggregate Expansion Rate (AER) is a measure of cumulative growth of all domain
aggregates. It records global data growth patterns throughout the system.

System Availability (SA) is used in measuring how much time the system is available and
functional. It indicates the integrity of infrastructures and fault-tolerance.

Failure Isolation Efficiency (FIE) analyses the degree to which the failures of the
component are isolated without impacting on other services. It means architectural
resilience and strength of fault isolation.

Lifecycle Completion Accuracy (LCA) indicates the proportion of orders that completed
all stages of the lifecycle successfully. It captures the consistency maintenance and the
accuracy of state changes.
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Table 2: Comparison of OPT, WT, and RT across different approaches
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mOPT (reg/s) ®mWT (reg/s)

Approach OPT (req/s) WT (req/s) RT (req/s)
Monolithic OMS 420 390 610
Denormalized NoSQL OMS 505 470 690
Event-Sourced OMS 565 520 740
Shared-DB Microservices 595 550 780
Sharded Key-Based OMS 635 590 820
Proposed Architecture 715 670 890
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Figure 3: Illustration of compared Throughput across different approaches

Order-processing throughput, write throughput, and read throughput are compared in the table
2 and Figure 3 of the three OMS structures. The monolithic systems that have traditional
systems are the lowest performing because they have centralized processing and are not easily
scalable. Likewise, pros and cons Denormalized NoSQL systems and event sourcing are
showing better throughput distribution due to workloads, but coordination overhead exists.
Shared-database microservices and key based sharded OMS also improves the read and write
rates by running them in parallel and distributing data. The proposed architecture yields optimal
performance, with 715 req/s order throughput, 670 req/s write throughput and 890req/s read
throughput and shows a better scaling, the balanced processing of reads and writes, and
efficiency of processing with high concurrency retail workloads.

Table 3: Comparison of AEL, L95, and EPD across different approaches

Approach AEL (ms) L95 (ms) EPD (ms)
Monolithic OMS 185 410 95
Denormalized NoSQL OMS 162 360 88
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Event-Sourced OMS 148 330 120
Shared-DB Microservices 142 310 102
Sharded Key-Based OMS 136 295 90
Proposed Architecture 118 260 62
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Figure 4: Illustration of compared Latency across different approaches

A comparative analysis of the latency-related measurements with various OMS architectures
is provided in table 3 and Figure 4. Denormalized and monolithic systems also have larger
average and tail latencies because centralized processing and access to data are competing.
Shared-database and event-sourced microservice trading is more efficient in reducing the
average latency, although it comes with a higher coordination overhead in the form of event
propagation. Key-based sharded systems also enhance tail latency by distributing the data. The
architecture we proposed has the lowest latency, with the average LTE of 118 ms, 95 th latency
of 260 ms and the event propagation latency of 62 ms, which means that it would respond faster

and more efficiently, using asynchronous coordination.

Table 4: Comparison of APGR, HDGR, AER across different approaches

Approach APGR HDGR AER (MB/h)
(MB/h) (MB/h)

Monolithic OMS 82 64 146
Denormalized NoSQL OMS 121 72 193
Event-Sourced OMS 76 81 157
Shared-DB Microservices 93 68 161

Sharded Key-Based OMS 69 74 143
Proposed Architecture 41 52 93
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Table 5: Comparison of SA, FIE, and LCA across different approaches

Approach SA (%) FIE (%) LCA (%)
Monolithic OMS 98.2 68.4 88.1
Denormalized NoSQL OMS 98.7 71.2 89.6
Event-Sourced OMS 99.1 79.5 91.3
Shared-DB Microservices 99 74.6 92
Sharded Key-Based OMS 99.3 83.7 93.6
Proposed Architecture 99.6 914 97.1
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Figure 4: Illustration of compared Data growth across different approaches

In table 4 and Figure 5, the growth characteristics of data in each of the data architectures are
compared by measuring active partition growth, historical data growth and general aggregate
expansion. The denormalized and monolithic NoSQL systems are characterized by faster
growth rate through hard-bound data model and unlimited aggregation. Microservices based
on shared databases and using event-sourced growth do moderate growth, but continue to
amass large volumes of operational information. The key-based systems based on sharding
enhance expansion via better distribution. The proposed architecture has the lowest growth
rates and an active partition growth of 41 MB/h, historical data growth of 52 MB/h and
aggregate expansion of 93 MB/h, which show efficiency in the lifecycle-conscious data
separation and controlled data expansion.
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Figure 5: Illustration of compared Reliability across different approaches

Reliability and correctness of systems in diverse OMS architectures are estimated in table 5
and Figure 6 through availability, efficiency of failure isolation and accuracy of the lifecycle
completion. Compared to the monolithic and denormalized systems, the loosely connected
components result in reduced isolation of failures affecting the correctness of faults.
Microservices that are event-sourced and shared-database enhance resiliency and yet have
partial propagation of failures. The isolation is also improved by the system based on sharded
keys that utilize distributed data ownership. The proposed architecture has the best reliability
profile, where system availability is 99.6, failure isolation is 91.4 and lifecycle completion is
97.1, which have a high fault containment, high operational continuity, and complex order
lifecycle management.

The findings indicate that architectures of poor data separation on a lifecycle basis present
steeper data expansion rate and extend latencies in the sustained loads. CGM or DN Systems
exhibit a high rate of active partition expansion which adversely affects performance and cost
effectiveness. Shared systems Event-driven systems enhance scalability but add coordination
overhead. The architecture reviewed adequately improves all the sets of metrics as the active
data growth is constrained, the propagation time is minimised, and failures are isolated, thus
leading to better throughput and reliability as well as lower cost.

The experimental findings support the hypothesis that the correspondence between data
modeling and the semantics of order lifecycle and partition-conscious design yields significant
benefits in the performance of OMS. In terms of throughput, latency, data growth, reliability,
and cost metrics, the suggested architecture manages to outperform the existing solutions. The
results confirm the efficiency of the cloud-native, normalized randomized and event-driven
architectural strategies of the scalable and sustainable retail Order Management Systems.
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Consideration of Cost Sensitivity

The tested architecture shows consistency of performance with the increment in the volumes
of the orders and the ratio of read to write operations. With the increasing workload intensity,
managed active data expansion, and effective partition usage help make the cost behaviour
predictable and denote that regardless of the sustained retailing demand, the architecture will
scale economically.

Threats to Validity

The presented results may be affected by a few factors that could affect the validity of the
results. Assumptions in workload generation may influence internal validity as they are
representative of real-world changes in retail traffic, but do not represent all of them. The
external validity is constrained as a study concentration is only on one type of retail OMS
workloads, and the findings might not be applicable to other areas with distinct transaction
features. Selection of performance measures can affect construct validity where, although they
are very comprehensive, they might not represent all the qualitative issues like complexity in
operational and maintenance.

5. CONCLSUION AND FUTURE SCOPE

This paper described a cloud-native architectural design of retail Order Management Systems
that focuses on lifecycle-aware data-modeling, partition-aware design, and event-based
coordination. The assessment shows that properly balancing business-domain boundaries with
distributed data limits contributes greatly to increased scalability, reliability, and operational
efficiency with high-concurrency retail workloads. It has an efficient architecture supporting
both active and past data growth and low latency and high availability, which means it can
support long-lived order lifecycle and transactions-intensive order life cycles. It has been
experimentally verified that disciplined schema normalization and asynchronous service
interaction decrease write and read amplification, better failure insolvability, and increase
system stability in general. Specifically, the obtained values of the key metrics reveal a high
level of performance and the order processing throughput is 715 requests per second, as well
as the average end-to-end latency is decreased to 118 milliseconds. Moreover, the system has
high operational resilience as the availability is reached 99.6% and the lifecycle completion
accuracy is 97.1%. Such findings legitimize the architecture and show that the proposed design
can be applied in large-scale, cloud-based retail settings.

5.1 Limitations

e The test is also performed under steered patterns of workload and might not reflect all
actual retail traffic fluctuations.

e Effects of cross-region latency and geo-replication are not studied widely.

e System management overheads may become more difficult with operational
complexity brought about by event-driven coordination.

5.2 Future Scope

The next generation of work can be based on this architecture, including adaptive partitioning
approaches that are guided by real-time workload measurement. Through integrating machine
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learning techniques, predictive scaling, and automated data lifecycle optimization can be
improved, which would further improve the performance and cost efficiency. Such channels of
multi-region deployment are also interesting avenues to explore.
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