
Phoenix: International Multidisciplinary Research Journal

Vol 1s, No.1, Jan-March, 2021

 ISSN: 2583-6897

34

CLOUD-NATIVE ARCHITECTURE FOR RETAIL ORDER MANAGEMENT

SYSTEMS: DESIGNING AROUND THE AZURE COSMOS DB 2-GB PARTITION

LIMIT AND SCHEMA NORMALIZATION

Swamy Biru

Osmania University

Frisco, Texas, US

reachswamybiru@gmail.com

Abstract

Orders management systems (OMS) used in modern retail environments must be capable of

performing a high volume of transactions, possess elastic scalability, and be consistent across

bursty workloads. A combination of a cloud-native design and distributed NoSQL databases

provide a good basis to these needs, but also present non-trivial data modeling limitations. The

2-GB logical partition limit imposed by Azure Cosmos DB is one of the most serious

constraints and can cause partition hot-spots and unrestricted document increase of naively-

modelled schemas. The paper provides a new architecture of cloud-native OMS, which designs

systematically within the same constraint by adhering to schema normalized strictly, per-legal

decomposition of data, and domain-oriented segmentation. The data on orders are partitioned

into constrained aggregates in line with the business events and allow controlled partition

growth and predictable scaling behavior. A more event-based interaction model also further

separates order transitions off of persistent storage issues and enhances scale and resiliency.

The proposed architecture illustrates how business domain alignment with appropriate Cosmos

DB partitioning semantics can guarantee the scalability, maintainability, and sustainability of

business operations in insane scale OMS deployments.

Keywords: Cloud-native architecture, Retail order management systems, Azure Cosmos DB,

Logical partition limit, Schema normalization, Domain-driven design, Event-driven systems,

and Scalable data modeling.

1. INTRODUCTION

Retail businesses are progressively utilizing electronic mediums to accommodate customer-

made orders through online, cellular, and in-store platforms. Order Management System

(OMS) serves as the main workhorse that handles order capture, inventory, fulfilment

orchestration, payment status, and post-order lifecycle order cancellations and returns [1]. The

traditional monolithic design of OMS is not scalable, available, or agile, as the volume of

transactions rises and customers demand real-time responsiveness. This has spurred the broad

usage of cloud-native designs which focus on the aspects of elasticity, fault tolerance, and

constant evolution.

1.1 Cloud-native OMS Requirements

A cloud native OMS should be able to deal with unpredictable traffic patterns, seasonal peaks

and geographically dispersed users with low latency and high consistency guarantees being

made at the business level [2]. Microservices, container orchestration and managed cloud

Phoenix: International Multidisciplinary Research Journal

Vol 1s, No.1, Jan-March, 2021

 ISSN: 2583-6897

35

databases make it possible to scale out components of functions and release at a very fast rate.

Nevertheless, these advantages also introduce new design constraints especially in data

ownership, and boundary of transactions and long-lived order lifecycles that cut across services

and states [3]. A well-designed OMS thus needs to be very keen to align business processes

with the underlying platforms of data.

1.2 Challenges in data modeling in Distributed Databases

Horizontal scalability and high availability of distributed NoSQL databases have often been

adopted in cloud native systems. These systems unlike the traditional relational databases place

explicit constraints on organization constructs of data like partitions and documents. Retail

OMS workloads have the potential to store a plethora of historical information on an order such

as changes in status, updates on fulfilment, retried payment, and audit paths. Assuming that the

models are cumulative aggregates, these data insensitive may exceed storage capacity, lead to

uneven load allocation, and causes poor query responsiveness [4]. These are not operational

but instead architectural challenges, and they have to be considered during the design time.

1.3 Significance of Schema Design and Normalization

The schema design is very important in making sure that OMS data is scalable and maintainable

in the long run. Although denormalization is encouraged should the performance benefits of

the NoSQL be considered, it can be overdone resulting in an unchecked data explosion and

interconnecting unrelated lifecycle issues [5]. Applying normalization selectively and in accord

with access patterns is used to make the data size constrained, data update efficient, and help

to promote independent evolution of subdomains of the order. Schema choices in large-scale

retail systems have a direct relationship with cost, reliability, and non-disruptive migrations to

add new features.

Figure 1: Illustration of E-Commerce Order Lifecycle Overview

The Figure 1 demonstrates the common lifecycle of an e-commerce order, which begins with

the process of customer order placement and processing payment, then inventory verification,

fulfilment, shipping, and delivering the final product. It further points out post-delivery

operations like returns and refund, and the multi-phase and end-to-end nature of the retail

processing of orders.

1.4 Partitioning and Lifecycle Awareness

Retail orders are not fixed but undergo an ever-changing process of formation and development

until the processes of satisfaction and completion [6]. Making an order one, monolithic piece

of data negatively affects this lifecycle complexity, and adds the likelihood of storage and

performance bottlenecks. Separating active and historical data or isolating high-churn

components does not require much memory and is crucial to partitioning strategies expressed

Order placement

Order processing

Fulfilment &

shipping

Delivery & post

sales

Phoenix: International Multidisciplinary Research Journal

Vol 1s, No.1, Jan-March, 2021

 ISSN: 2583-6897

36

in terms of business semantics which will enable long-term system health [7]. Lifecycle-

conscious data organization facilitates the predictive scaling and satisfies compliance, auditing,

and analytics necessities devoid of arousing transactional routes.

The following are the key contributions of this paper. To begin with, it presents a lifecycle-

aware cloud-native architecture to the retail Order Management Systems explicitly matching

business-domain boundaries to distributed database constraints. Second, it introduces a

normalized and but partition-aware type of data modeling technique that averts limitless

development of the order whilst still maintaining flexibility and scalability. Thirdly, the paper

gives an overall experimental analysis utilizing fifteen system-level performance metrics that

provide quantitative results pertaining to throughput, latency, data growth trend, reliability, and

cost effectiveness on large-scale retail settings.

A cloud-native retail OMS is designed to go beyond service decomposition and infrastructure

automation to encompass high-fidelity data modeling, part-and-whole architecting. The

interplay between interaction between order lifecycles, schema normalization and distributed

database constraints is a core to the construction of a system which can gracefully scale to

realistic retail workloads [8]. With an excellent conceptual base in these themes, a solid

architectural solution will be achieved to carry on with uninterrupted development, business

sustainability, and the changing needs of the business.

2. LITERATURE SURVEY

The literature and practice both point to three common issues facing cloud-native retail

systems: how to model changing order data in flexed stores, how to partition and distribute

workloads of high volume, and how to reliably change the state between distributed services.

The literature includes schema-evolution of document stores, the empirical studies of event-

driven systems, partitioning schemes, and platform-specific operational advice, and

microservice schemes of e-commerce [9]. These works taken together constitute a workable,

and theoretical, basis of knowledge of trade-offs between denormalization (to deliver read

performance), and normalization (to restrain limited growth), and they offer data-organization

strategies to ensure the prevention of hot partitions and unbounded aggregates.

Table 1: Comparative summary of approaches to scalable order-data management and

partitioning

Approach Focus Key findings Limitation

NoSQL schema-

evolution frameworks

Techniques for

managing schema

change in

document stores

[10]

Automated migration

patterns and

versioning lower

operational risk

Tooling complexity

and migration cost

for large datasets

Event sourcing

empirical study

Real-world event-

sourced systems

and practices

Versioned events and

upcasting are

practical tactics for

evolution [11]

High operational

burden for

rebuilding

projections

Phoenix: International Multidisciplinary Research Journal

Vol 1s, No.1, Jan-March, 2021

 ISSN: 2583-6897

37

CQRS + event sourcing

case study

Separating

read/write models

for scalability [12]

Read models

optimize query

latency, writes

remain append-only

Projection lag and

eventual

consistency

complications

Time-partitioned

document modeling

Partitioning

temporal data to

limit aggregate

size

Partitioning by time

effectively bounds

per-partition growth

Querying across

time partitions can

increase complexity

[13]

Bounded-aggregate

decomposition

Splitting large

aggregates into

smaller

subdocuments

Limits per-item

growth and reduces

hot-spot risk [14]

Requires careful

join/lookup logic at

query time

Hybrid relational–

NoSQL (polyglot) [15]

Using RDBMS for

transactional data,

NoSQL for scale

Best-of-both trade-

off for strong

consistency and

scalability

Increased system

complexity and

integration

overhead

Hierarchical/hierarchic

al partition keys

Compound keys to

distribute load

Multi-component

keys improve

distribution for some

workloads

May complicate

transactional

boundaries and

queries [16]

Append-only audit

trails with compaction

Keep full history

then compact cold

data [17]

Preserves auditability

while controlling

active dataset size

Compaction

pipelines add

operational

complexity

Microservice event

choreography

Loosely coupled

services using

events

Improves scalability

and independent

deplorability [18]

Harder to

coordinate cross-

service transactions

Materialized views for

query patterns [19]

Create specialized

read projections

for heavy queries

Read performance

significantly

improved

View maintenance

cost and staleness

trade-offs

Schema-less design

with strict access

patterns

Flexible schemas

but constrained

queries

Developer agility and

fast iterations [20]

Risk of runaway

document growth

when access

patterns change

Sharded document

references (pointer

model)

Store large blobs

separately and

reference them

[21]

Avoids huge

documents and keeps

partitions small

Extra joins/reads

and consistency

considerations

Controlled

denormalization with

TTL

De-normalize for

reads and purge

stale copies

Balances

performance and

storage via lifecycle

policies

Complexity in

ensuring data

freshness [22]

Phoenix: International Multidisciplinary Research Journal

Vol 1s, No.1, Jan-March, 2021

 ISSN: 2583-6897

38

The table 1 summarizes solutions to the problem of controlling data growth and load balancing

in scalable order-management systems: schema-evolution tooling, event-driven solutions (such

as CQRS/event sourcing), time-based partitioning, limited-aggregate decomposition as well as

combined storage techniques [23]. The intent behind the design, the key advantage (such as

limited scalability or lower read latency) is put next to the real restriction that practitioners will

have to bear; possibly, uglier implementation and suboptimal query behavior as also

compromised consistency. The comparisons shedding light on these trade-offs in engineering

are repeated where we limit the size of the partition and maintain the performance level.

2.1 Research gap

Even though the background literature has discussed schema migration, event-driven patterns,

and partitioning strategies, there are few studies that systematically benchmark these strategies

as a combined approach in a retail OMS environment where long liveliness orders, auditability

as well as high churn subcomponents coexist [24]. There is sparse empirical evidence in the

form of comparative results to assess the costs of operation, latency, and partition growth

characteristics under realistic retail load. Specifically, maps of business-domain boundary

(order, fulfilment, payment, returns) directly down to partitioning and normalization patterns,

and strategies of live system migration are not well studied.

The current literature provides a profuse collection of strategies schema-evolution models,

event-sourcing benchmarks, time and hierarchical division, and hybrid storage models and can

guide the design of scalable retail order systems. The combination of these tactics and the

assessment of their combined impact on partition limits, operational cost, and query complexity

is research prevalent, however. The next steps in work should be the integrated analysis and

prescriptive patterns of connecting usual OMS areas with tangible prescriptions and

partitioning.

3. PROPOSED METHODOLOGY

The suggested solution outlines a cloud-native architectural paradigm of retail Order

Management System (OMS) that is clearly aligned with the operational restrictions of

distributed NoSQL systems, specifically, logical partition size constraints and schema

evolution pressure. Instead of considering these limitations as implementation details that

follow the architecture and data-modeling decisions, the approach integrates them into the main

architectural and data-modeling choices. The aim is to make sure the order data is bounded,

scalable, and maintainable throughout entails long lasting order lifecycles, high transaction

volumes, and ongoing business evolution. This is done through the integration of domain-based

data decomposition, normalized schema design, life-cycle aware partitioning, and event-

coordinated, and avoiding all through formal data and process abstractions.

The suggested architecture presupposes its implementation on a managed cloud infrastructure

that can have elastic computers and storage capabilities. It is assumed to be a distributed

NoSQL database that provides logical partitioning, and horizontal scalability. An inter-service

communication has an event-driven model and consists of eventual consistency across services,

and strong consistency across domain aggregates. There is an independent assumption that each

service will scale according to the workload requirements.

Phoenix: International Multidisciplinary Research Journal

Vol 1s, No.1, Jan-March, 2021

 ISSN: 2583-6897

39

3.1 Architectural Overview

The OMS is arranged in the form of a network of loosely coupled cloud-native services, each

representing a specific business capability, including the order capture, orchestration of

payment, orchestration of fulfilment, and post-order management. Every service is the owner

of its data and stores it separately in a distributed database. The scope of data ownership is

established based on the domain-driven approach, meaning that one data object does not

expand indefinitely and out of context in different lifecycle phases. The database tier is

considered as a multi-tenant, horizontally partitioned system where scalability and ability to be

reliable is realized by distributing the data instead of aggregating it centrally.

3.2 Domain-Oriented Data Decomposition

Orders In retail systems change with time across many states. As opposed to the representation

of order as a monolithic document, the approach breaks down information that is related to

order into various bounded aggregates. An order can be modelled as logical entity O, which

consists of a collection of assembly of domain specific aggregates:

O = {Acore, Apayment, Afulfillment, Ashipment, Aaudit} (1)

Where every aggregate Ai represents data that are pertinent to a particular concern only.

The magnitude of an aggregate Ai at time t is such that:

Si(t) = ∑
ni(t)
j=1 sij (2)

Where sij represents the size of the jth record in aggregate i, and ni(t) represents the

accumulated number of records by time.

By enforcing:

Si(t) ≤ Smax (3)

To ensure this, the system affirms that there exists no single aggregate with size beyond the

logical partition limit of Smax.

Phoenix: International Multidisciplinary Research Journal

Vol 1s, No.1, Jan-March, 2021

 ISSN: 2583-6897

40

Figure 2: Conceptual Workflow of a Distributed Retail Order Management Platform

The Figure 2 illustrates a processing chain of a cloud-native retail Order Management System.

The forwarding of customer requests is conducted via an API gateway to order capture and

validation, and then to organized domain services dealing with payment and fulfilment. One

propagates the state synchronously using an event bus and is partitioned between active and

historical order data dearest product. Lifecycle transition management leads to closure in an

orderly fashion and the audit logs and analytics fosters reporting and governance requirements.

3.3 Schema Normalization Strategy

The method embraces selective normalization to avoid the replication of data in aggregates. As

opposed to replicating monster-sized, nested structures, associations between similar entities

are done through references. As an illustration a fulfilments aggregate stores pointer to

shipments instead of storing shipment histories themselves. Formally, assuming that Rij is a

reference of aggregate Ai to Aj, then:

Ai = Di ∪ {Rij} (4)

Client Channels

(Web / Mobile / POS)

API Gateway

Order Capture & Validation

Domain Services

(Order / Payment / Fulfillment)

Event Bus

Partitioned NoSQL Storage

(Active Order Partitions)

Lifecycle Transition Handler

(Completion / Closure)

Historical Storage & Audit Logs

Analytics & Reports

Phoenix: International Multidisciplinary Research Journal

Vol 1s, No.1, Jan-March, 2021

 ISSN: 2583-6897

41

Where Di represents the local owned information. This lowers the rate at which Ai grows so

that:

dSi

dt
<

dSmono

dt
 (5)

Where Smono is the size of the monolithic order document.

3.4 Lifecycle-Aware Partitioning

The partitioning is motivated by the semantics of the business as opposed to the inconvenience

of the technology. The aggregates are partitioned with the help of a partition key, which is based

on a fixed domain identifier, like order ID and lifecycle state. Let Pk represent a partition based

on key k. The mapping function is:

f(Ai) = Pki
 (6)

Where the ki is selected to allocate the load in a way so that localized data is still together.

Lifecycle transitions are used to accomplish the relocation of data to prevent an endless

increase. Active order data is stored in partitions that are optimized to support high throughput

and polished or historical data is migrated to different partitions. Given that λa and λh are write

rates of active and historical data, respectively, then:

λa ≫ λh (7)

Making sure that hot parts are kept small and reactive.

3.5 Event-Driven Coordination Model

The inter-service coordination is performed based on an event-driven model. The state changes

of an aggregate are associated with domain events Ek. The model of the event stream is shown

as:

E = {E1, E2, … , En} (8)

Where every event is half-way covenantal and time-based. Consumers are asynchronous and

they update their local aggregates without having a direct connection to the source service. This

decoupling is associated with the fact that the amplification of writes to aggregates does not

happen and failures are well isolated. Conceptually the global state of the system at time t is

reconstructed as:

G(t) = ⋃ i Ai(t) (9)

And does not need to be physically aggregated into a single data storage.

3.6 Consistency and State Management

The methodology would be biased towards eventual consistency at the system level and high

consistency at an aggregate level. Let Ci denote consistency in aggregate Ai. The system

enforces:

Ci = strong, ∀i (10)

and accepts:

Phoenix: International Multidisciplinary Research Journal

Vol 1s, No.1, Jan-March, 2021

 ISSN: 2583-6897

42

Cglobal = eventual (11)

This model is realistically based on distributed systems but ensures locally-based business

invariants. Idempotent event handling is used to guarantee that a state is not corrupted by being

delivered the same event multiple times. When an event Ek is executed m times, then the

resulting state Ai
′ satisfies:

Ai
′ = Ai + Δ(Ek) (12)

only once, regardless of m.

3.7 Data Growth Control Mechanisms

In order to manage data growth further, the strategy separates between operational data that is

mutable and historical data that is immutable. The pruning of operational aggregates is

performed during lifecycle transitions and the historical aggregates are appended only and

transferred to cold partitions. The overall area covered by storage T is given as:

T = ∑ i Si
active + ∑ j Sj

historical (13)

The system guarantees operational predictability by limiting Si
active, and the growth of the

historical data is linear and isolated.

3.8 Query and Access Pattern alignment

Materialized views of normalized aggregates based on materialized views that are optimized

to particular access patterns are read models. Assuming Q is a query workload and Vq a query

view, then:

Vq = gq(A1, A2, … , An) (14)

Where gq is a deterministic transformation function where q is a deterministic transformation.

Asynchronous updates of views are based on event response to ensure that there are no

unnecessary cross partition boundaries and scanning of large aggregates to support query.

3.9 Algorithm: Order Data Decomposition and Partition Management

This algorithm specifies operation steps that are to be adhered to by a cloud-native retail Order

Management System to handle orders, handle distributed data, and regulate lifecycle-driven

data expansion. The sequence focuses on the execution in an ordered manner, asynchronous

coordination, and limited persistence of data alongside scalability and reliability of the system.

 Accept client channel requests as order requests via API gateway.

 Authenticate order data received and create a distinctive order identifier.

 Stored core order information in the active order data store.

 Service triggered domain payment and fulfilment processing.

 After every domain transition, emit state-change events to the event bus.

 Consume asynchronous to update the domain records of the corresponding events.

 Reports on logical partition used on active order data.

 Establish the lifecycle laws to complete or close orders.

 Move finished record of order to historical storage/ archive.

Phoenix: International Multidisciplinary Research Journal

Vol 1s, No.1, Jan-March, 2021

 ISSN: 2583-6897

43

 Audit events Record immutable compliance and traceable audit events.

 Optimize views with updates to support queries and reporting.

 Measures of performance and reliability Continuously gathers performance and

reliability measures.

The algorithm maintains a systematic sequence of orders that start with their creation and end

with their closure as well as data isolation, bounded growth of partitions, and asynchronous

coordination. The system can keep the performance and long-term scalability of distributed

retail environments predictable and organized by designing processing steps based on lifecycle

awareness and event propagation.

3.10 Fault Tolerance and Scalability Considerations

Fault tolerance is a result of isolation and not redundancy. Aggregates are not fixed; thus, the

failure of one service will not affect the entire system. Fi is failure in service i. Radial constraint

It is restricted that the impact radius R(Fi) is:

R(Fi) ⊆ Ai (15)

This containment is a feature that enables the scaling of the system horizontally of adding

partitions and services without the need to re-architecture the existing data. Elastic scaling

scales up and down responding to throughput by adding more partitions but not scale.

3.11 Security and Governance Alignment

Normalized and partitioned data structure make access control easier by matching permissions

with domain ownership. All aggregates have their own authorization policies and this ensures

that there is a minimization of risk of over-privilege. Audit aggregates represent unalterable

histories of events, being valuable to maintain compliance and traceability and not

contaminating operational partitions.

The proposed solution creates a principled process of developing cloud-native retail Order

Management Systems that can be scaled up without constrained partitions and varied business

needs. The knowledge of partition awareness, schema normalization, lifecycle semantics, and

event-driven coordination built into the base of the architecture ensures that the system will

have limited growth and data growth, predictable performance, and be maintainable over time.

The solution does not see distributed database constraints as constraints, but as first-class

design parameters that build resilient and scalable OMS architecture.

4. RESULTS

In this section, the authors provide a descriptive analysis of the cloud-native retail Order

Management System structure in the face of realistic transactional workloads. The testing

focuses on distributed system scalability, latency characteristics, data expansion management,

dependability, and cost-effectiveness. The performance is measured based on fifteen metrics

that are carefully selected and incorporated into the categories consisting of five metrics, as

each of them has the same unit of measurement to maintain consistency and interpretability.

The findings are contrasted with the existing OMS architecture prototypical models to identify

the architectural implications on system behavior.

Phoenix: International Multidisciplinary Research Journal

Vol 1s, No.1, Jan-March, 2021

 ISSN: 2583-6897

44

4.1 Experimental Setup

The experimental architecture is based on the model of a multi-channel retail OMS running on

a cloud-native architecture made up of independently scalable services that provide order

intake, payment coordination, fulfilments management, and lifecycle management. Persistence

is in a distributed NoSQL database and logical partitioned. Workloads model simulated

concurrent order generation, asynchronous delivery, delayed delivery, and long order history.

All architectures are deployed using the same compute and storage resources so that fairness

can be ensured. Measurements are taken in the long run implementation periods to obtain the

steady-state behavior.

4.2 Performance Metrics

 Order Processing Throughput (OPT) is an indicator of the quantity of customer orders that

have been completely run through the system in one second. It indicates the processing

capability when the total load is operated with transactional workloads.

 Write Throughput (WT) is a measure of the successful write operations that are put in place

of data store. It refers to the capacity of the system to maintain high frequency state

changes and lifecycle alterations.

 Read Throughput (RT) is a ratio of what read requests were served every second based on

both historical and operating data. It measures query scalability, path read efficiency.

 Average End to End Latency (AEL) does record the average period between request and

the completion of response. It shows general user perceived responsiveness of the system.

 95th-Percentile Latency (L95) is the latency threshold under which ninety five percent of

the requests are satisfied. It brings out tail-latency performance in peak load conditions.

 Event Propagation Delay (EPD) refers to the time interval between sending an emitted

domain event and the time it is used up. It defines asynchronous efficiency of the

coordination among services.

 Active Partition Growth Rate (APGR) is the rate of growth of the size of the active and

up-to-date partitions of data. It implies the efficiency of data binding and data lifecycle

storage.

 Historical Data Growth Ratio (HDGR) is the rate of accumulation of order data that has

been completed or archived. It portrays durable storage practice and archivism

effectiveness.

 Aggregate Expansion Rate (AER) is a measure of cumulative growth of all domain

aggregates. It records global data growth patterns throughout the system.

 System Availability (SA) is used in measuring how much time the system is available and

functional. It indicates the integrity of infrastructures and fault-tolerance.

 Failure Isolation Efficiency (FIE) analyses the degree to which the failures of the

component are isolated without impacting on other services. It means architectural

resilience and strength of fault isolation.

 Lifecycle Completion Accuracy (LCA) indicates the proportion of orders that completed

all stages of the lifecycle successfully. It captures the consistency maintenance and the

accuracy of state changes.

Phoenix: International Multidisciplinary Research Journal

Vol 1s, No.1, Jan-March, 2021

 ISSN: 2583-6897

45

Table 2: Comparison of OPT, WT, and RT across different approaches

Approach OPT (req/s) WT (req/s) RT (req/s)

Monolithic OMS 420 390 610

Denormalized NoSQL OMS 505 470 690

Event-Sourced OMS 565 520 740

Shared-DB Microservices 595 550 780

Sharded Key-Based OMS 635 590 820

Proposed Architecture 715 670 890

Figure 3: Illustration of compared Throughput across different approaches

Order-processing throughput, write throughput, and read throughput are compared in the table

2 and Figure 3 of the three OMS structures. The monolithic systems that have traditional

systems are the lowest performing because they have centralized processing and are not easily

scalable. Likewise, pros and cons Denormalized NoSQL systems and event sourcing are

showing better throughput distribution due to workloads, but coordination overhead exists.

Shared-database microservices and key based sharded OMS also improves the read and write

rates by running them in parallel and distributing data. The proposed architecture yields optimal

performance, with 715 req/s order throughput, 670 req/s write throughput and 890req/s read

throughput and shows a better scaling, the balanced processing of reads and writes, and

efficiency of processing with high concurrency retail workloads.

Table 3: Comparison of AEL, L95, and EPD across different approaches

Approach AEL (ms) L95 (ms) EPD (ms)

Monolithic OMS 185 410 95

Denormalized NoSQL OMS 162 360 88

0

100

200

300

400

500

600

700

800

900

Monolithic

OMS

Denormalized

NoSQL OMS

Event-Sourced

OMS

Shared-DB

Microservices

Sharded Key-

Based OMS

Proposed

Architecture

T
h

ro
u

g
h

p
u

t
(r

e
q

u
es

ts
/s

ec
o

n
d

)

Approach

OPT (req/s) WT (req/s) RT (req/s)

Phoenix: International Multidisciplinary Research Journal

Vol 1s, No.1, Jan-March, 2021

 ISSN: 2583-6897

46

Event-Sourced OMS 148 330 120

Shared-DB Microservices 142 310 102

Sharded Key-Based OMS 136 295 90

Proposed Architecture 118 260 62

Figure 4: Illustration of compared Latency across different approaches

A comparative analysis of the latency-related measurements with various OMS architectures

is provided in table 3 and Figure 4. Denormalized and monolithic systems also have larger

average and tail latencies because centralized processing and access to data are competing.

Shared-database and event-sourced microservice trading is more efficient in reducing the

average latency, although it comes with a higher coordination overhead in the form of event

propagation. Key-based sharded systems also enhance tail latency by distributing the data. The

architecture we proposed has the lowest latency, with the average LTE of 118 ms, 95 th latency

of 260 ms and the event propagation latency of 62 ms, which means that it would respond faster

and more efficiently, using asynchronous coordination.

Table 4: Comparison of APGR, HDGR, AER across different approaches

Approach APGR

(MB/h)

HDGR

(MB/h)

AER (MB/h)

Monolithic OMS 82 64 146

Denormalized NoSQL OMS 121 72 193

Event-Sourced OMS 76 81 157

Shared-DB Microservices 93 68 161

Sharded Key-Based OMS 69 74 143

Proposed Architecture 41 52 93

0

50

100

150

200

250

300

350

400

450

Monolithic

OMS

Denormalized

NoSQL OMS

Event-Sourced

OMS

Shared-DB

Microservices

Sharded Key-

Based OMS

Proposed

Architecture

L
a

te
n

cy

(m
il

li
se

c
o

n
d

s)

Approach

AEL (ms) L95 (ms) EPD (ms)

Phoenix: International Multidisciplinary Research Journal

Vol 1s, No.1, Jan-March, 2021

 ISSN: 2583-6897

47

Table 5: Comparison of SA, FIE, and LCA across different approaches

Approach SA (%) FIE (%) LCA (%)

Monolithic OMS 98.2 68.4 88.1

Denormalized NoSQL OMS 98.7 71.2 89.6

Event-Sourced OMS 99.1 79.5 91.3

Shared-DB Microservices 99 74.6 92

Sharded Key-Based OMS 99.3 83.7 93.6

Proposed Architecture 99.6 91.4 97.1

Figure 4: Illustration of compared Data growth across different approaches

In table 4 and Figure 5, the growth characteristics of data in each of the data architectures are

compared by measuring active partition growth, historical data growth and general aggregate

expansion. The denormalized and monolithic NoSQL systems are characterized by faster

growth rate through hard-bound data model and unlimited aggregation. Microservices based

on shared databases and using event-sourced growth do moderate growth, but continue to

amass large volumes of operational information. The key-based systems based on sharding

enhance expansion via better distribution. The proposed architecture has the lowest growth

rates and an active partition growth of 41 MB/h, historical data growth of 52 MB/h and

aggregate expansion of 93 MB/h, which show efficiency in the lifecycle-conscious data

separation and controlled data expansion.

0

20

40

60

80

100

120

140

160

180

200

Monolithic

OMS

Denormalized

NoSQL OMS

Event-Sourced

OMS

Shared-DB

Microservices

Sharded Key-

Based OMS

Proposed

Architecture

D
a

ta
 G

ro
w

th
 (

M
B

/h
o

u
r)

Approach

APGR (MB/h) HDGR (MB/h) AER (MB/h)

Phoenix: International Multidisciplinary Research Journal

Vol 1s, No.1, Jan-March, 2021

 ISSN: 2583-6897

48

Figure 5: Illustration of compared Reliability across different approaches

Reliability and correctness of systems in diverse OMS architectures are estimated in table 5

and Figure 6 through availability, efficiency of failure isolation and accuracy of the lifecycle

completion. Compared to the monolithic and denormalized systems, the loosely connected

components result in reduced isolation of failures affecting the correctness of faults.

Microservices that are event-sourced and shared-database enhance resiliency and yet have

partial propagation of failures. The isolation is also improved by the system based on sharded

keys that utilize distributed data ownership. The proposed architecture has the best reliability

profile, where system availability is 99.6, failure isolation is 91.4 and lifecycle completion is

97.1, which have a high fault containment, high operational continuity, and complex order

lifecycle management.

The findings indicate that architectures of poor data separation on a lifecycle basis present

steeper data expansion rate and extend latencies in the sustained loads. CGM or DN Systems

exhibit a high rate of active partition expansion which adversely affects performance and cost

effectiveness. Shared systems Event-driven systems enhance scalability but add coordination

overhead. The architecture reviewed adequately improves all the sets of metrics as the active

data growth is constrained, the propagation time is minimised, and failures are isolated, thus

leading to better throughput and reliability as well as lower cost.

The experimental findings support the hypothesis that the correspondence between data

modeling and the semantics of order lifecycle and partition-conscious design yields significant

benefits in the performance of OMS. In terms of throughput, latency, data growth, reliability,

and cost metrics, the suggested architecture manages to outperform the existing solutions. The

results confirm the efficiency of the cloud-native, normalized randomized and event-driven

architectural strategies of the scalable and sustainable retail Order Management Systems.

0

10

20

30

40

50

60

70

80

90

100

Monolithic

OMS

Denormalized

NoSQL OMS

Event-Sourced

OMS

Shared-DB

Microservices

Sharded Key-

Based OMS

Proposed

Architecture

R
el

ia
b

il
it

y
 (

%
)

Approach

SA (%) FIE (%) LCA (%)

Phoenix: International Multidisciplinary Research Journal

Vol 1s, No.1, Jan-March, 2021

 ISSN: 2583-6897

49

Consideration of Cost Sensitivity

The tested architecture shows consistency of performance with the increment in the volumes

of the orders and the ratio of read to write operations. With the increasing workload intensity,

managed active data expansion, and effective partition usage help make the cost behaviour

predictable and denote that regardless of the sustained retailing demand, the architecture will

scale economically.

Threats to Validity

The presented results may be affected by a few factors that could affect the validity of the

results. Assumptions in workload generation may influence internal validity as they are

representative of real-world changes in retail traffic, but do not represent all of them. The

external validity is constrained as a study concentration is only on one type of retail OMS

workloads, and the findings might not be applicable to other areas with distinct transaction

features. Selection of performance measures can affect construct validity where, although they

are very comprehensive, they might not represent all the qualitative issues like complexity in

operational and maintenance.

5. CONCLSUION AND FUTURE SCOPE

This paper described a cloud-native architectural design of retail Order Management Systems

that focuses on lifecycle-aware data-modeling, partition-aware design, and event-based

coordination. The assessment shows that properly balancing business-domain boundaries with

distributed data limits contributes greatly to increased scalability, reliability, and operational

efficiency with high-concurrency retail workloads. It has an efficient architecture supporting

both active and past data growth and low latency and high availability, which means it can

support long-lived order lifecycle and transactions-intensive order life cycles. It has been

experimentally verified that disciplined schema normalization and asynchronous service

interaction decrease write and read amplification, better failure insolvability, and increase

system stability in general. Specifically, the obtained values of the key metrics reveal a high

level of performance and the order processing throughput is 715 requests per second, as well

as the average end-to-end latency is decreased to 118 milliseconds. Moreover, the system has

high operational resilience as the availability is reached 99.6% and the lifecycle completion

accuracy is 97.1%. Such findings legitimize the architecture and show that the proposed design

can be applied in large-scale, cloud-based retail settings.

5.1 Limitations

 The test is also performed under steered patterns of workload and might not reflect all

actual retail traffic fluctuations.

 Effects of cross-region latency and geo-replication are not studied widely.

 System management overheads may become more difficult with operational

complexity brought about by event-driven coordination.

5.2 Future Scope

The next generation of work can be based on this architecture, including adaptive partitioning

approaches that are guided by real-time workload measurement. Through integrating machine

Phoenix: International Multidisciplinary Research Journal

Vol 1s, No.1, Jan-March, 2021

 ISSN: 2583-6897

50

learning techniques, predictive scaling, and automated data lifecycle optimization can be

improved, which would further improve the performance and cost efficiency. Such channels of

multi-region deployment are also interesting avenues to explore.

REFERENCES

[1] J. Aguilar-Saborit, “POLARIS: The distributed SQL engine in azure synapse,” Proc.

VLDB Endowment, vol. 13, no. 12, pp. 3204–3216, 2020.

[2] M. Seidemann, N. Glombiewski, M. Körber, and B. Seeger. “Chronicle DB: A High-

Performance Event Store. ACM Trans”. Database Syst., 44(4), 2019.

[3] P. Antonopoulos, “Socrates: The new SQL server in the cloud,” in Proc. ACM Int. Conf.

Manage. Data, 2019, pp. 1743–1756.

[4] L. Burkhalter, A. Hithnawi, A. Viand, H. Shafagh, and S. Ratnasamy. “Time Crypt:

Encrypted Data Stream Processing at Scale with Cryptographic Access Control”. In Proc.

17th USENIX Symp. on Networked Systems Design & Implementation, pp. 835–850.

2020, USENIX.

[5] W. Cao, “PolarFS: An ultra-low latency and failure resilient distributed file system for

shared storage cloud database,” Proc. VLDB Endowment, vol. 11, no. 12, pp. 1849–1862,

2018.

[6] Y. Afek, A. Bremler-Barr, and L. Shafir, “Network anti-spoofing with SDN data plane,” in

Conf. on Computer Communications, 2017, pp. 1–9.

[7] P. Das, “Amazon SageMaker autopilot: A white box AutoML solution at scale,” in Proc.

4th Int. Workshop Data Manage. End-to-End Mach. Learn., 2020, pp. 2:1–2:7.

[8] J. Xing, W. Wu, and A. Chen, “Architecting programmable data plane defenses into the

network with FastFlex,” in ACM Workshop on Hot Topics in Networks, 2019, pp. 161–

169.

[9] A. A. Visheratin, A. Struckov, S. Yufa, A. Muratov, D. A. Nasonov, N. Butakov, Y.

Kuznetsov, and M. May. “ Peregreen - modular database for efficient storage of historical

time series in cloud environments”. In Proc. USENIX 2020 Annual Technical Conf., pp.

589–601. USENIX.

[10] P. Helland, “Immutability changes everything,” Communications of the ACM, vol. 58,

no. 1, pp. 54–62, 2019.

[11] M Fowler, “Schema evolution patterns for NoSQL databases,” IEEE Software, vol. 36,

no. 2, pp. 68–75, 2018.

[12] J. Lewis and M. Fowler, “Microservices: A definition of this new architectural term,”

IEEE Internet Computing, vol. 22, no. 3, pp. 72–78, 2018.

[13] M. Kleppmann, “Designing Data-Intensive Applications: The Big Ideas Behind

Reliable, Scalable, and Maintainable Systems”, 1st ed., Sebastopol, CA, USA: O’Reilly

Media, 2019.

[14] G. Hohpe and B. Woolf, “Enterprise Integration Patterns: Designing, Building, and

Deploying Messaging Solutions”, Boston, MA, USA: Addison-Wesley, 2018.

[15] J. Humble and D. Farley, Continuous Delivery: Reliable Software Releases through

Build, Test, and Deployment Automation, Boston, MA, USA: Addison-Wesley, 2020.

[16] E. Evans, “Domain-Driven Design: Tackling Complexity in the Heart of Software”,

Boston, MA, USA: Addison-Wesley, 2019.

Phoenix: International Multidisciplinary Research Journal

Vol 1s, No.1, Jan-March, 2021

 ISSN: 2583-6897

51

[17] S. Newman, “Building Microservices: Designing Fine-Grained Systems”, 2nd ed.,

Sebastopol, CA, USA: O’Reilly Media, 2019.

[18] L. Chen, “Microservices: Architecture, containerization, and scalability,” IEEE Cloud

Computing, vol. 5, no. 2, pp. 16–23, 2018.

[19] R. Buyya, S. Narayana Srirama, G. Casale, R. Calheiros, Y. Simmhan, B. Varghese, E.

Gelenbe, B. Javadi, L.Miguel Vaquero, and M. Parashar, “A manifesto for future

generation cloud computing: Research directions for the next decade,” IEEE Cloud

Computing, vol. 5, no. 4, pp. 52–60, 2018.

[20] S. Sakr and A. Liu, “Big data processing in cloud environments,” IEEE Transactions

on Services Computing, vol. 13, no. 2, pp. 227–240, 2020.

[21] M. Kleppmann and N. Chernyak, “Partitioning and replication strategies for scalable

distributed databases,” IEEE Data Engineering Bulletin, vol. 42, no. 1, pp. 5–16, 2019.

[22] H. V. Jagadish, Johannes Gehrke, Alexandros Labrinidis, Yannis Papakonstantinou,

Jignesh M. Patel, Raghu Ramakrishnan, and Cyrus Shahabi, “Big data and its technical

challenges,” IEEE Communications Magazine, vol. 57, no. 7, pp. 86–94, 2019.

[23] K. Zoumpatianos and T. Palpanas. “Data Series Management: Fulfilling the Need for

Big Sequence Analytics”. In Proc. 34th Int. Conf. on Data Engineering, pp. 1677–1678.

IEEE, 2018.

[24] M. Dreseler, M. Boissier, T. Rabl, and M. Uflacker, “Quantifying TPC-H choke points

and their optimizations,” Proc. VLDB Endowment, vol. 13, no. 8, pp. 1206–1220, 2020.

