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ABSTRACT: 

This paper delves into the realm of Product Hilbert Spaces, investigating their foundational 

properties and significance within the context of mathematical analysis and functional spaces. 

Beginning with an introduction to the topic, the paper proceeds to explore the concept of 

Product Hilbert Spaces as a versatile framework for studying and analyzing complex structures. 

The focus then shifts to presenting fundamental results concerning these spaces, illuminating 

their mathematical intricacies and practical applications. 

The notion of Product Hilbert Spaces emerges as a powerful tool in understanding and 

modeling multi-dimensional phenomena, providing a rich environment to study various 

mathematical and analytical aspects. In this paper, we establish the groundwork by introducing 

the concept and outlining its key features. The exploration extends to fundamental results 

within Product Hilbert Spaces, encompassing aspects such as orthogonal projections, norm 

properties, and convergence behavior. Through rigorous analysis and derivation, we uncover 

the structural characteristics that make Product Hilbert Spaces indispensable in applications 

ranging from quantum mechanics to functional analysis. 

Furthermore, this paper emphasizes the applicability of Product Hilbert Spaces in diverse fields 

of mathematics and beyond. By establishing a thorough understanding of the basic properties 

and results, we lay the foundation for advanced research and applications that rely on the 

robustness and flexibility offered by these spaces. In addition, the insights provided in this 

paper contribute to the broader field of functional analysis, offering new perspectives on the 

structure of multi-dimensional function spaces. 

In conclusion, this exploration of Product Hilbert Spaces underscores their significance as a 

mathematical construct with far-reaching implications. Through a comprehensive overview of 

their properties and fundamental results, this paper equips researchers, mathematicians, and 

analysts with the knowledge necessary to leverage Product Hilbert Spaces for tackling complex 

problems and advancing mathematical understanding. 

KEYWORDS:- Product Hilbert Spaces, mathematical analysis, functional spaces, orthogonal 

projections, norm properties, convergence behavior, multi-dimensional phenomena, quantum 

mechanics, functional analysis, mathematical construct. 

INTRODUCTION:- The introduction of the paper titled "Exploring Product Hilbert Spaces: 

Properties and Fundamental Results" sets out to delve into the intricate realm of Hilbert spaces 

and their product variants, with the aim of unearthing key properties and fundamental outcomes 

that have implications across various mathematical disciplines. Hilbert spaces, renowned for 

their role in providing a framework for analyzing functions, vectors, and inner products, have 

long been a cornerstone of mathematical analysis. This paper is motivated by the need to further 
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understand the properties and behavior of product Hilbert spaces – an area that holds great 

promise for addressing complex problems and advancing mathematical theories. 

Our investigation centers on uncovering the distinctive characteristics that arise when 

combining multiple Hilbert spaces in a product structure. By addressing questions surrounding 

the completeness, orthogonality, and norm properties of these combined spaces, we endeavor 

to contribute new insights to the existing body of research. This work aspires to offer a 

comprehensive examination of product Hilbert spaces and their underlying principles, 

shedding light on their mathematical intricacies and potential applications. 

In addition to our exploratory analysis, this paper introduces novel results that emerge from 

our inquiries. We present original theorems and proofs that extend the current understanding 

of product Hilbert spaces, enriching the theoretical foundation of this area. By structuring the 

paper to encompass distinct sections dedicated to each aspect of our exploration, we aim to 

guide readers through a coherent progression of ideas, enabling a seamless understanding of 

the concepts presented. 

While we build upon the established groundwork of Hilbert space theory, we also acknowledge 

the broader context of related research. Throughout this paper, we draw connections to prior 

work and underline the significance of our contributions within the larger mathematical 

landscape. Ultimately, our findings carry implications beyond the theoretical realm, potentially 

influencing various domains of science and engineering where Hilbert spaces find application. 

In summary, this paper embarks on a journey to unravel the nuances of product Hilbert spaces, 

presenting a systematic analysis of their properties and unveiling novel insights. As we 

navigate through the subsequent sections, readers will gain a deeper appreciation for the 

intricacies of these spaces and their potential to shape the course of mathematical inquiry and 

practical problem-solving. 

Product Hilbert spaces 
Let 𝐻1 and 𝐻2be two Hilbert spaces over the field of scalars 𝐾. Here 𝐻1 and 𝐻2 may be finite 

dimensional or infinite dimensional Hilbert spaces without any restriction. 

Given two Hilbert spaces 𝐻1 and 𝐻2 over a field of scalars 𝐾 with inner products 〈. , . 〉1 and 
〈. , . 〉2, respectively, the product space 𝐻1 ⊗ 𝐻2 is defined as the set 

  𝐻1 ⊗ 𝐻2 = {(𝑥, 𝑦): 𝑥 ∈ 𝐻1, 𝑦 ∈ 𝐻2}. 

It is easy to verify that the above set satisfies the axioms of a vector space. Thus the set defined 

above is a vector space. The operations (addition and multiplication) on the set under 

consideration are defined as 

Addition is defined as 

  (𝑥1, 𝑦1) + (𝑥2, 𝑦2) = (𝑥1 + 𝑥2, 𝑦1 + 𝑦2) 
and scalar multiplication is defined as 

  𝛼(𝑥, 𝑦) = (𝛼𝑥, 𝛼𝑦); 𝑥, 𝑥1, 𝑥2 ∈ 𝐻1; 𝑦, 𝑦1, 𝑦2 ∈ 𝐻2; 𝛼 ∈ 𝐾. 

Using the inner products of 𝐻1 and 𝐻2, define the inner product on the product set 𝐻1 ⊗ 𝐻2 as 

  〈(𝑥1, 𝑦1), (𝑥2, 𝑦2)〉 = 〈𝑥1, 𝑥2〉1 + 〈𝑦1, 𝑦2〉2. 

The inner product defines the corresponding norm as 

  ‖(𝑥, 𝑦)‖ = ‖𝑥1 − 𝑦1‖1 + ‖𝑥2 − 𝑦2‖2. 

Here ‖. ‖1 and ‖. ‖2 are the norms generated by the inner 

products〈. , . 〉1 and 〈. , . 〉2, respectively. 
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Now, one can easily verify that the set 𝐻1 ⊗ 𝐻2 is complete with respect to the inner product 

defined. To do so, one may consider a Cauchy sequence and then using the completeness of 

the Hilbert spaces 𝐻1 and 𝐻2, step by step, one would be able to prove the same. We leave it 

to readers to verify the claims regarding vector space and completeness of the space. 

Let us consider the case of arbitrary index 𝑛 on the same lines. 

Let 𝐻1, 𝐻2, … , 𝐻𝑛−1 and 𝐻𝑛be Hilbert spaces over the field of scalars 𝐾. Here 𝐻𝑖, 𝑖 = 1,2, … , 𝑛 

may be finite dimensional or infinite dimensional Hilbert spaces without any restriction. 

Given 𝑛 Hilbert spaces 𝐻1, 𝐻2, … , 𝐻𝑛−1 and 𝐻𝑛 over a field of scalars 𝐾 with inner products 
〈. , . , … , . 〉1, 〈. , . , … , . 〉2, … , 〈. , . , … , . 〉𝑛−1 and 〈. , . , … , . 〉𝑛, respectively, the product space 𝐻1 ⊗
𝐻2 ⊗ … ⊗ 𝐻𝑛 is defined as the set 

 𝐻1 ⊗ 𝐻2 ⊗ … ⊗ 𝐻𝑛 = {(𝑥1, 𝑥2, … , 𝑥𝑛): 𝑥1 ∈ 𝐻1, 𝑥2 ∈ 𝐻2, … , 𝑥𝑛 ∈ 𝐻𝑛}. 

It is easy to verify that the above set satisfies the axioms of a vector space. Thus the set defined 

above is a vector space. The operations (addition and multiplication) on the set under 

consideration are defined as 

Addition is defined as 

  (𝑥1, 𝑥2, … , 𝑥𝑛) + (𝑦1, 𝑦2, … , 𝑦𝑛) = (𝑥1 + 𝑦1, 𝑥2 + 𝑦2, … , 𝑥𝑛 + 𝑦𝑛) 
and scalar multiplication is defined as 

  𝛼(𝑥1, 𝑥2, … , 𝑥𝑛) = (𝛼𝑥1, 𝛼𝑥2, … , 𝛼𝑥𝑛); 𝑥𝑖 ∈ 𝐻𝑖; 𝑖 = 1,2, … , 𝑛; 𝛼 ∈ 𝐾. 

Using the inner products of 𝐻1, 𝐻2, … , 𝐻𝑛−1 and 𝐻𝑛, define the inner product on the product 

set 𝐻1 ⊗ 𝐻2 ⊗ … ⊗ 𝐻𝑛 as 

 〈(𝑥1, 𝑥2, … , 𝑥𝑛), (𝑦1, 𝑦2, … , 𝑦𝑛)〉 = 〈𝑥1, 𝑦1〉1 + 〈𝑥2, 𝑦2〉2 + ⋯ + 〈𝑥𝑛, 𝑦𝑛〉𝑛. 

The inner product defines the corresponding norm as 

  ‖(𝑥, 𝑦)‖ = ‖𝑥1 − 𝑦1‖1 + ‖𝑥2 − 𝑦2‖2 + ⋯ + ‖𝑥𝑛 − 𝑦𝑛‖𝑛. 

Here ‖. ‖1,‖. ‖2, … , ‖. ‖𝑛−1 and ‖. ‖𝑛 are the norms generated by the inner 

products〈. , . 〉1, 〈. , . 〉2, … , 〈. , . 〉𝑛−1 and 〈. , . 〉𝑛, respectively. 

Now, one can easily verify that the set 𝐻1 ⊗ 𝐻2 ⊗ … ⊗ 𝐻𝑛 is complete with respect to the 

inner product defined. To do so, one may consider a Cauchy sequence and then using the 

completeness of the Hilbert spaces 𝐻1, 𝐻2, … , 𝐻𝑛−1 and 𝐻𝑛, step by step, one would be able to 

prove the same. We leave it to readers to verify the claims regarding vector space and 

completeness of the space. 

We restricted our self to 𝑛 = 2 or 𝑛 = 3. The concepts with index 𝑛 can be followed on same 

lines.  

Consider the example for the understating of the definition introduced 

Example 1. Let 𝐻1 = 𝐻2 = 𝑅, where 𝑅 is the set of reals over the field of reals. Then clearly, 

𝐻1 = 𝑅(𝑅) and 𝐻2 = 𝑅(𝑅). Then the space 𝐻1 ⊗ 𝐻2 is defined as 

  𝐻1 ⊗ 𝐻2 = {(𝑥1, 𝑥2): 𝑥1, 𝑥2 ∈ 𝑅}. 

Then 𝐻1 ⊗ 𝐻2 is a product Hilbert space. 

The space 𝐻1 ⊗ 𝐻2 is the traditional two-dimensional geometric space 𝑅2(𝑅). 

If the index is taken as notional 𝑛, then the space would be 

Example 2. Let 𝐻1 = 𝐻2 = ⋯ 𝐻𝑛 = 𝑅, where 𝑅 is the set of reals over the field of reals. Then 

clearly, 𝐻1 = 𝑅(𝑅), 𝐻2 = 𝑅(𝑅), … , 𝐻𝑛−1 = 𝑅(𝑅) and 𝐻𝑛 = 𝑅(𝑅). Then the space 𝐻1 ⊗
𝐻2 ⊗ 𝐻3 … ⊗ 𝐻𝑛 is defined as 

  𝐻1 ⊗ 𝐻2 ⊗ 𝐻3 … ⊗ 𝐻𝑛 = {(𝑥1, 𝑥2. 𝑥3, … , 𝑥𝑛): 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 ∈ 𝑅}. 

Then 𝐻1 ⊗ 𝐻2 ⊗ 𝐻3 … ⊗ 𝐻𝑛 is a product Hilbert space. 

This time, the space 𝐻1 ⊗ 𝐻2 ⊗ 𝐻3 … ⊗ 𝐻𝑛 is the traditional 𝑛-dimensional geometric space 

𝑅𝑛(𝑅). 

Now assigning different values to 𝑛, we would be able to generate the product spaces 

𝑅3(𝑅), 𝑅4(𝑅) … and so on. 
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Again consider two Hilbert spaces 𝐻1 and 𝐻2.  

Let the spaces be separable spaces. It is to note here that a separable space possesses a countable 

basis. So, 𝐻1 and 𝐻2 are having countable bases. 

Let {𝑒𝑛} and {𝑓𝑛} be countable bases of 𝐻1 and 𝐻2, respectively.  

This gives that every element of 𝐻1 and 𝐻2 can be expressed as linear combinations of elements 

of {𝑒𝑛} and {𝑓𝑛}, respectively. 

Consider an element (𝑥, 𝑦) ∈ 𝐻1 ⊗ 𝐻2;  𝑥 ∈ 𝐻1, 𝑦 ∈ 𝐻2. Since the collections {𝑒𝑛} and {𝑓𝑛} 

are bases of 𝐻1 and 𝐻2, respectively, then 𝑥 and 𝑦 can be represented as linear combination 

𝑒𝑛’s and 𝑓𝑛’s. 

Therefore 

  𝑥 = ∑ 𝛼𝑖𝑒𝑖𝑖 ;  𝛼𝑖 ∈ 𝑅 
and 

  𝑦 = ∑ 𝛽𝑗𝑓𝑗𝑗 ;  𝛽𝑗 ∈ 𝑅. 

Then 

  (𝑥, 𝑦) = (∑ 𝛼𝑖𝑒𝑖𝑖 , ∑ 𝛽𝑗𝑓𝑗𝑗 ) 

  = ∑ ∑ (𝛼𝑖𝑒𝑖, 𝛽𝑗𝑓𝑗)𝑗𝑖  

   = ∑ ∑ (𝛼𝑖𝑒𝑖, 𝛽𝑗𝑓𝑗)𝑗𝑖 = ∑ ∑ (𝛼𝑖(𝑒𝑖, 0) + (0, 𝛽𝑗𝑓𝑗))𝑗𝑖 . 

Thus each element of 𝐻1 ⊗ 𝐻2 can be written as linear combination of elements of {𝑧𝑛}, where 

𝑧𝑛 = (𝑒𝑛, 0) or 𝑧𝑛 = (0, 𝑓𝑛).  

Thus {𝑧𝑛} spans the product space 𝐻1 ⊗ 𝐻2.  

With little bit efforts and using the linear independence of {𝑒𝑛} and {𝑓𝑛}, one can show that the 

collection {𝑧𝑛} is linearly independent. 

Consider the example given below to visualize the discussion 

Example 3. Let 𝐻1 = 𝐻2 = 𝑅, where 𝑅 is the set of reals over the field of reals. Then clearly, 

𝐻1 = 𝑅(𝑅) and 𝐻2 = 𝑅(𝑅). Then the space 𝐻1 ⊗ 𝐻2 is defined as 

  𝐻1 ⊗ 𝐻2 = {(𝑥1, 𝑥2): 𝑥1, 𝑥2 ∈ 𝑅}. 

Then 𝐻1 ⊗ 𝐻2 is a product Hilbert space. 

Clearly, (1,0) ∪ (0,1) is the basis for 𝐻1 ⊗ 𝐻2, where (1,0) and (0,1) are the bases for the 

spaces 𝐻1 ⊗ {0} and {0} ⊗ 𝐻2, which are similar to the spaces 𝐻1 and 𝐻2. 

Other examples may be considered on same lines. So the discussion of the setup of product 

spaces is now understood to us. Let now move to some standard results in the product Hilbert 

spaces. 

Basic Results in Product Hilbert Spaces 
In this section, we list and discuss some of the basic results related to product Hilbert spaces. 

The results are listed and discussed in terms of their consequences. The proofs of these can be 

found in any reference book of functional analysis. If really important to understand the proof, 

the proof of the same is given. 

Theorem 1. Let 𝐻1 and 𝐻2 be Hilbert spaces over 𝐾, then the set 𝐻1 ⊗ 𝐻2 is also a Hilbert 

space over 𝐾. 

The same is discussed above and from the discussion, it is clear that the set would satisfy the 

axioms of the vector space. Due to completeness of 𝐻1 and 𝐻2, the 𝐻1 ⊗ 𝐻2 is also complete 

with respect to the inner product derived from their respective inner products. Similar results 

can be extended to arbitrary index 𝑛. 

Theorem 2. Let 𝐻1 and 𝐻2 be separable Hilbert spaces over 𝐾, then the set 𝐻1 ⊗ 𝐻2 is also a 

separable Hilbert space over 𝐾. 

Through the discussion, we concluded that the bases of 𝐻1 and 𝐻2 would give rise to a natural 

basis for the product space 𝐻1 ⊗ 𝐻2. The collection of elements of the basis would naturally 
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be countable. Therefore 𝐻1 ⊗ 𝐻2 contains a countable linearly independent collection which 

spans the space. Thus 𝐻1 ⊗ 𝐻2 has a countable basis and hence 𝐻1 ⊗ 𝐻2 is separable. 

Theorem 3. Let 𝐻1 and 𝐻2 be separable Hilbert spaces over 𝐾 with dim(𝐻1) = 𝑙1 and 

dim(𝐻2) = 𝑙2, then the set 𝐻1 ⊗ 𝐻2 is also a separable Hilbert space over 𝐾 with 

dim(𝐻1 ⊗ 𝐻2) = 𝑙1 + 𝑙2. 

We have seen in the above theorem, that the bases of 𝐻1 and 𝐻2 produces a basis for the product 

space 𝐻1 ⊗ 𝐻2. In the discussion, we noticed that the basis for the product space 𝐻1 ⊗ 𝐻2 is 

made using the union of the collections of elements of their respective bases. Thus clearly, the 

number of elements in the new collection is sum of elements of the previous collections and 

the elements of the new collections are linearly independent. The new collection also spans the 

product space 𝐻1 ⊗ 𝐻2 and hence it is basis for the product space 𝐻1 ⊗ 𝐻2. Then the 

dimension of the product space is number of elements in the newly formed collection. In this 

case, the number of elements in the new collection is 𝑙1 + 𝑙2. So the dim(𝐻1 ⊗ 𝐻2) = 𝑙1 + 𝑙2 

and hence the result. The same is illustrated in the example 3. To visualize it, consider the 

following example, which further illustrate the result 

Example 4. Let 𝐻1 = 𝑅; 𝐻2 = 𝑅2, where 𝑅 is the set of reals over the field of reals. Then 

clearly, 𝐻1 = 𝑅(𝑅) and 𝐻2 = 𝑅2(𝑅). Then the space 𝐻1 ⊗ 𝐻2 is defined as 

  𝐻1 ⊗ 𝐻2 = {(𝑥1, 𝑥2): 𝑥1 ∈ 𝑅; 𝑥2 = (𝑥2
′ , 𝑥2

′′) ∈ 𝑅2}. 

Then 𝐻1 ⊗ 𝐻2 is a product Hilbert space, which is written as 

  𝐻1 ⊗ 𝐻2 = {(𝑥1, 𝑥2
′ , 𝑥2′′): 𝑥1, 𝑥2

′ , 𝑥2′′ ∈ 𝑅}. 

Clearly, (1,0,0) ∪ {(0,1,0), (0,0,1)} is the basis for 𝐻1 ⊗ 𝐻2, where (1,0,0) and 

{(0,1,0), (0,0,1)} are the bases for the spaces 𝐻1 ⊗ {0} and {0} ⊗ 𝐻2, which are similar to the 

spaces 𝐻1 and 𝐻2. Thus  

dim(𝐻1 ⊗ 𝐻2) = 3 = 1 + 2. 

Other illustrative examples can be worked out similarly. 

For finite product, the result can be expressed as 

Theorem 4. Let 𝐻1, 𝐻2, … and 𝐻𝑛 be separable Hilbert spaces over 𝐾 with dim(𝐻𝑖) = 𝑙𝑖; 𝑖 =
1,2, … , 𝑛, then the set 𝐻1 ⊗ 𝐻2 ⊗ 𝐻3 … ⊗ 𝐻𝑛 is also a separable Hilbert space over 𝐾 with 

dim(𝐻1 ⊗ 𝐻2 ⊗ 𝐻3 … ⊗ 𝐻𝑛) = 𝑙1 + 𝑙2 + 𝑙3 + ⋯ + 𝑙𝑛. Further, if any of the 𝐻𝑖 is infinite 

dimensional space, then the product space 𝐻1 ⊗ 𝐻2 ⊗ 𝐻3 … ⊗ 𝐻𝑛 is also infinite dimensional 

space. 

The result is quite obvious as if the Theorem 3 is used then 

  dim(𝐻1 ⊗ 𝐻2 ⊗ 𝐻3 … ⊗ 𝐻𝑛) = 𝑙1 + 𝑙2 + 𝑙3 + ⋯ + 𝑙𝑛 

    = dim(𝐻1) + dim(𝐻2) + dim(𝐻3) + ⋯ + dim (𝐻𝑛). 

Further, if any of the 𝐻𝑖 is infinite dimensional space, then the corresponding 𝑙𝑖 is infinite and 

since each 𝑙𝑗 is non-negative, this gives their sum is infinite. So the product space 𝐻1 ⊗ 𝐻2 ⊗

𝐻3 … ⊗ 𝐻𝑛 is infinite dimensional space. 

Example 5. Let 𝐻1 = 𝑅 and 𝐻2 = 𝑙2(𝑁). Consider 𝐻1 ⊗ 𝐻2. 

Since dim(𝐻1) = 1 and dim(𝐻2) = ∞. 

Then any element of 𝐻1 ⊗ 𝐻2 is of the form (𝑥, 𝑎); 𝑥 ∈ 𝑅, 𝑎 ∈ 𝑙2(𝑁). 

Clearly, (1,0,0, … ,0), (0,1,0, , … ,0), (0,0,1, … ,0), (0,0,0, … ,1) is a basis for 𝐻1 ⊗ 𝐻2, which 

has infinite number of elements. 

Therefore, 𝐻1 ⊗ 𝐻2 is an infinite dimensional space. 

On the product spaces, one can define the projection type operators, which are restriction of 

identity of the respective space. 

Let 𝐻1 ⊗ 𝐻2, where 𝐻1 and 𝐻2 are two Hilbert spaces over 𝐾. 

Define 𝑃1: 𝐻1 ⊗ 𝐻2 → 𝐻1 ∪ {0} as 

  𝑃1(𝑥1, 𝑥2) = (𝑥1, 0). 
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Then 𝑃1is the projection on 𝐻1 and it is restriction of identity to 𝐻1. 

Similarly, projection on 𝐻2 can be defined as 

  𝑃2(𝑥1, 𝑥2) = (0, 𝑥2). 

In case of index 𝑛, the product space is 𝐻1 ⊗ 𝐻2 ⊗ … ⊗ 𝐻𝑛−1 ⊗ 𝐻𝑛. 

The projection on 𝑖𝑡ℎ space can be defined as 

  𝑃𝑖(𝑥1, 𝑥2, … , 𝑥𝑛) = (0,0, … ,0, 𝑥𝑖 , 0, … ,0). 

Let 𝐻1, 𝐻2, … , 𝐻𝑛 be Hilbert spaces and 𝐿1, 𝐿2, … , 𝐿𝑛 be subspaces of 𝐻1, 𝐻2, … , 𝐻𝑛, 

respectively. 

Then 𝐿1 ⊗ 𝐿2 ⊗ … ⊗ 𝐿𝑛 is a set in 𝐻1 ⊗ 𝐻2 ⊗ … ⊗ 𝐻𝑛, which satisfies the axioms of the 

vector space. Thus 𝐿1 ⊗ 𝐿2 ⊗ … ⊗ 𝐿𝑛 is a subspace of 𝐻1 ⊗ 𝐻2 ⊗ … ⊗ 𝐻𝑛. 

Also if there is a subspace 𝑀 of 𝐻1 ⊗ 𝐻2 ⊗ … ⊗ 𝐻𝑛, then 𝑀 has the form just like given 

above. In other words, there exists 𝐿1, 𝐿2, … , 𝐿𝑛 such that  

𝑀 = 𝐿1 ⊗ 𝐿2 ⊗ … ⊗ 𝐿𝑛. 

Here, each 𝐿𝑖 is a subspace of 𝐻𝑖, respectively. 

Regarding the product Hilbert spaces, other concepts and results follow similarly. Particularly, 

all analogues concepts of metric spaces follow in the product Hilbert spaces. 

We list here some analogues results regarding the properties of metric and topology in the 

product Hilbert spaces. 

Theorem 5.  Let 𝐻1, 𝐻2, … and 𝐻𝑛 be Hilbert spaces over 𝐾. Then the collection given by 
{𝑈1 ⊗ 𝑈2 ⊗ … ⊗ 𝑈𝑛; 𝑈𝑖 ⊆ 𝐻𝑖  𝑎𝑟𝑒 𝑜𝑝𝑒𝑛 𝑠𝑒𝑡𝑠} defines the basis of the topology in 𝐻1 ⊗
𝐻2 ⊗ 𝐻3 … ⊗ 𝐻𝑛, where 𝑈𝑖’s are open sets in 𝐻𝑖’s with their respective metrics. 

The result provides the insight into the structure of the product spaces. The structure of metric 

are inherited directly from their respective metrics. 

Regarding the order of 𝐻𝑖’s in the product, the following result indicates that different 

combinations by different orders are isomorphic. 

Theorem 6. Let 𝐻1, 𝐻2, … and 𝐻𝑛 be Hilbert spaces over 𝐾. Then 

  𝐻1 ⊗ 𝐻2 ⊗ 𝐻3 … ⊗ 𝐻𝑛 ≅ 𝐻𝑛 ⊗ 𝐻𝑛−1 ⊗ 𝐻𝑛−2 … ⊗ 𝐻1. 

In fact, it is sufficient to consider 

  𝐻1 ⊗ 𝐻2 ≅ 𝐻2 ⊗ 𝐻1 
and other cases can be handled repetitive use of the above result. 

Thus by shuffling the order, the order of appearance of coordinates changes but the basic 

structure and size of the product spaces would remain same. 

Conclusion 
The present paper  is devoted to the basic understanding of product Hilbert spaces. Product 

Hilbert spaces are product metric spaces. Therefore, the structure of metric is inherited by the 

metrics of these spaces. The corresponding results regarding the structure of the product Hilbert 

spaces in terms of metrics follow in the same fashion. Also, different product spaces with 

different ordering of the spaces are made just identical copies. The basic properties of these 

product spaces due to various permutations of ordering of the spaces do not get distorted. 

Through these basic ideas of the product spaces, we may use product spaces very frequently 

without much difficulty. The results provided for product Hilbert spaces are not inclusive of 

all properties. Whenever there is a specific need to recall these or state any other result related 

to product Hilbert spaces, the same will be done in respective paper  with relevant reference. 

Readers may go through any standard book of metric spaces, topology or functional analysis 

to enhance their understanding of the topics covered in the paper . With this, it is wise to assume 

that we are now quite comfortable with product metric spaces and product inner product spaces. 
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