BLACK & WHITE FACES OF AI: BALANCING INNOVATION AND ETHICAL DILEMMAS IN MULTIDISCIPLINARY RESEARCH
DOI:
https://doi.org/10.65009/dbnapq27Keywords:
Artificial Intelligence, Ethical Dilemmas, Innovation Multidisciplinary Research Responsible AI.,,Abstract
The transformative power of Artificial Intelligence (AI) presents a stark dichotomy: immense
potential for innovation and progress, juxtaposed with serious ethical and societal risks. This
paper, titled "Black & White Faces of AI," employs a multidisciplinary approach across
business, healthcare, education, governance, and social sciences to explore these dual realities.
We examine how AI drives unprecedented gains in efficiency, personalized services, and
decision-making precision, while simultaneously grappling with the "black face" of
algorithmic bias, privacy erosion, job displacement, and the challenge to human agency.
Drawing on global case studies and literature, we argue that the sustainable integration of AI
hinges on establishing robust ethical frameworks, fostering interdisciplinary collaboration, and
enacting policies that prioritize fairness and inclusivity. Our analysis aims to provide
policymakers, researchers, and practitioners with critical insights for navigating this spectrum,
ensuring that we maximize AI's benefits while responsibly mitigating its adverse consequences.
References
Brynjolfsson, E., & McAfee, A. (2017). Machine, platform, crowd: Harnessing our
digital future. W.W. Norton & Company.
Bughin, J., Seong, J., Manyika, J., Chui, M., & Joshi, R. (2018). Notes from the AI
frontier: Modeling the impact of AI on the world economy. McKinsey Global Institute.
Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world.
Harvard Business Review, 96(1), 108–116.
Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y.,
Dwivedi, R., Edwards, J., Eirug, A., Galanos, V., Ilavarasan, P. V., Janssen, M., Jones,
P., Kar, A. K., Kizgin, H., Kronemann, B., Lal, B., Lucini, B., … Williams, M. D.
(2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging
challenges, opportunities, and agenda for research, practice, and policy. International
Journal
of
Information
Management,
https://doi.org/10.1016/j.ijinfomgt.2019.08.002
,
Floridi, L., & Cowls, J. (2019). A unified framework of five principles for AI in society.
Harvard Data Science Review, 1(1). https://doi.org/10.1162/99608f92.8cd550d1
Hagendorff, T. (2020). The ethics of AI ethics: An evaluation of guidelines. Minds and
Machines, 30(1), 99–120. https://doi.org/10.1007/s11023-020-09517-8
Makridakis, S. (2017). The forthcoming Artificial Intelligence (AI) revolution: Its
impact
on
society
and
firms.
Futures,
,
–60.
https://doi.org/10.1016/j.futures.2017.03.006
Rahwan, I., Cebrian, M., Obradovich, N., Bongard, J., Bonnefon, J. F., Breazeal, C.,
Crandall, J. W., Christakis, N. A., Couzin, I. D., Jackson, M. O., Jennings, N. R., Kamar,
E., Kloumann, I. M., Larochelle, H., Lazer, D., McElreath, R., Mislove, A., Parkes, D.
C., Pentland, A., … Wellman, M. (2019). Machine behavior. Nature, 568(7753), 477
https://doi.org/10.1038/s41586-019-1138-y
Shrestha, Y. R., Ben-Menahem, S. M., & von Krogh, G. (2019). Organizational
decision-making structures in the age of artificial intelligence. California Management
Review, 61(4), 66–83. https://doi.org/10.1177/0008125619862257
West, S. M., Whittaker, M., & Crawford, K. (2019). Discriminating systems: Gender,
race
and
power
in
AI.
https://ainowinstitute.org/discriminatingsystems.html
AI
Now
Institute.
Wilson, H. J., & Daugherty, P. R. (2018). Collaborative intelligence: Humans and AI
are joining forces. Harvard Business Review, 96(4), 114–123.
Zeng, Y., Lu, E., & Huangfu, C. (2019). Linking artificial intelligence principles. ArXiv
preprint arXiv:1812.04814. https://doi.org/10.48550/arXiv.1812.04814

