SPATIOTEMPORAL DYNAMICS AND FUTURE PROJECTION OF LAND USE AND LAND COVER IN THE GHOD RIVER BASIN (2001–2040)
DOI:
https://doi.org/10.65009/yn0bjq07Keywords:
The Ghod River Basin; Urbanization; Landsat; Accuracy Assessment; Land Use and Land Cover (LULC); Remote Sensing; GIS; CA-Markov Model; Maximum Likelihood Classification.,,Abstract
Understanding landscape dynamics and human consequences requires accurate evaluation of Land
Use and Land Cover (LULC) change. This study uses Landsat 7 ETM+ and Landsat 8 OLI imagery
to examine LULC patterns in the Ghod River Basin for the years 2001, 2014, and 2024. Confusion
matrices and Kappa statistics were used to validate the classification performance of Supervised
Maximum Likelihood Classification (MLC). The 2040 LULC scenario was predicted using a
Cellular Automata–Markov model based on transition probabilities from multi-temporal data.
The results show important differences between land-cover classifications. Built-up areas are
expected to reach 473.15 km² by 2040, having increased from 293.99 km² in 2001 to 422.62 km²
in 2024. Increased anthropogenic stress and decreased ecological stability are reflected in the
ongoing decline of dense forests, vegetation, and water bodies. The 2040 landscape simulation
highlights additional natural cover fragmentation and is consistent with present development
trends. Overall, the work shows how well spatial modeling and remote sensing can be used to
assess landscape change and promote well-informed planning for land use.
References
Admas, M., Melesse, A. M., & Tegegne, G. (2024). Prevendoosimpactos do uso/cobertura
da terra e mudançasclimáticasnosfluxos de água e sedimentosnabaciahidrográfica de
Megech,
Bacia
do Alto Nilo Azul. Remote Sensing, 16(13), 2385.
https://doi.org/10.3390/rs16132385
Afuye, G. A., Ndku, L., Kalumba, A. M., Santos, C. A. G., Orimoloye, I. R., Ojeh, V. N.,
Thamaga, K. H., & Sibandze, P. (2024). Global trend assessment of land use and land cover
changes: A systematic approach to future research development and planning. In Journal
of
King Saud University - Science (Vol. 36, Issue 7). Elsevier B.V.
https://doi.org/10.1016/j.jksus.2024.103262
Asif, M., Kazmi, J. H., Tariq, A., Zhao, N., Guluzade, R., Soufan, W., Almutairi, K. F.,
Sabagh, A. El, & Aslam, M. (2023). Modelling of land use and land cover changes and
prediction using CA-Markov and Random Forest. Geocarto International, 38(1).
https://doi.org/10.1080/10106049.2023.2210532
Attri, P., Chaudhry, S., & Sharma, S. (2015). International Journal of Current Engineering
and Technology Remote Sensing & GIS based Approaches for LULC Change Detection
A Review. In 3126| International Journal of Current Engineering and Technology (Vol. 5,
Issue 5). http://inpressco.com/category/ijcet
Dutta, D., Rahman, A., Paul, S. K., & Kundu, A. (2020). Estimating urban growth in peri
urban areas and its interrelationships with built-up density using earth observation datasets.
Annals of Regional Science, 65(1), 67–82. https://doi.org/10.1007/s00168-020-00974-8
Giller, K. E., Beare, M. H., Lavelle ’, P., Izac, A.-M. N., & Swift, M. J. (1997). Applied
Soil Ecology Agricultural intensification, soil biodiversity and agroecosystem function. In
Applied Soil Ecology (Vol. 6).
Gyamfi, C., Ndambuki, J. M., & Salim, R. W. (2016). Hydrological responses to land
use/cover changes in the Olifants Basin, South Africa. Water (Switzerland), 8(12).
https://doi.org/10.3390/w8120588
Kamaraj, M., & Rangarajan, S. (2022). Predicting the future land use and land cover
changes for Bhavani basin, Tamil Nadu, India, using QGIS MOLUSCE plugin.
Environmental
Science
and
Pollution
https://doi.org/10.1007/s11356-021-17904-6
Research,
(57),
–86348.
Lambin, E. F. , G. H. J. ,& L. E. (2001). Dynamics of land-use and land-cover change in
tropical regions. Annual Review of Environment and Resources, 28(1), 205–241.
Mondal, M. S., Sharma, N., Kappas, M., & Garg, P. K. (2015). Critical assessment of land
use land cover dynamics using multi-temporal satellite images. Environments - MDPI,
(1), 61–90. https://doi.org/10.3390/environments2010061
Pielke, R. A. (2005). Land use and climate change. Science, 310(5754), 1625–1626.
https://doi.org/10.1126/science.1120529
Probeck, M., Colgan, A., Krimly, T., Zárate, M., & Schneider, K. (2016). Land Use and
land cover. Regional Assessment of Global Change Impacts: The Project GLOWA-Danube,
(2), 83–89. https://doi.org/10.1007/978-3-319-16751-0_9
Salman, S. A., Shahid, S., Mohsenipour, M., & Asgari, H. (2018). Impact of landuse on
groundwater quality of Bangladesh. Sustainable Water Resources Management, 4(4),
–1036. https://doi.org/10.1007/s40899-018-0230-z
Singh, S. K., Mustak, S., Srivastava, P. K., Szabó, S., & Islam, T. (2015). Predicting Spatial
and Decadal LULC Changes Through Cellular Automata Markov Chain Models Using
Earth Observation Datasets and Geo-information. Environmental Processes, 2(1), 61–78.
https://doi.org/10.1007/s40710-015-0062-x
Singh Sisodia, P., & Tiwari, V. (n.d.). Analysis of Supervised Maximum Lil
Classification for Remote Sensing Image.
Tahir, Z., Haseeb, M., Mahmood, S. A., Batool, S., Abdullah-Al-Wadud, M., Ullah, S., &
Tariq, A. (2025). Predicting land use and land cover changes for sustainable land
management using CA-Markov modelling and GIS techniques. Scientific Reports, 15(1),
–23. https://doi.org/10.1038/s41598-025-87796-w
ZEPPEL, M. (2011). Ecological Climatology: Concepts and Applications, Second Edition.
Austral Ecology, 36(5), e20–e21. https://doi.org/10.1111/j.1442-9993.2010.02195.x

