SPATIOTEMPORAL DYNAMICS AND FUTURE PROJECTION OF LAND USE AND LAND COVER IN THE GHOD RIVER BASIN (2001–2040)

Authors

  • Mr. Kailas D. Sabale Author

DOI:

https://doi.org/10.65009/yn0bjq07

Keywords:

The Ghod River Basin; Urbanization; Landsat; Accuracy Assessment; Land Use and Land Cover (LULC); Remote Sensing; GIS; CA-Markov Model; Maximum Likelihood Classification.,,

Abstract

Understanding landscape dynamics and human consequences requires accurate evaluation of Land 
Use and Land Cover (LULC) change. This study uses Landsat 7 ETM+ and Landsat 8 OLI imagery 
to examine LULC patterns in the Ghod River Basin for the years 2001, 2014, and 2024. Confusion 
matrices and Kappa statistics were used to validate the classification performance of Supervised 
Maximum Likelihood Classification (MLC). The 2040 LULC scenario was predicted using a 
Cellular Automata–Markov model based on transition probabilities from multi-temporal data. 
The results show important differences between land-cover classifications. Built-up areas are 
expected to reach 473.15 km² by 2040, having increased from 293.99 km² in 2001 to 422.62 km² 
in 2024. Increased anthropogenic stress and decreased ecological stability are reflected in the 
ongoing decline of dense forests, vegetation, and water bodies. The 2040 landscape simulation 
highlights additional natural cover fragmentation and is consistent with present development 
trends. Overall, the work shows how well spatial modeling and remote sensing can be used to 
assess landscape change and promote well-informed planning for land use. 

,

References

Admas, M., Melesse, A. M., & Tegegne, G. (2024). Prevendoosimpactos do uso/cobertura

da terra e mudançasclimáticasnosfluxos de água e sedimentosnabaciahidrográfica de

Megech,

Bacia

do Alto Nilo Azul. Remote Sensing, 16(13), 2385.

https://doi.org/10.3390/rs16132385

Afuye, G. A., Ndku, L., Kalumba, A. M., Santos, C. A. G., Orimoloye, I. R., Ojeh, V. N.,

Thamaga, K. H., & Sibandze, P. (2024). Global trend assessment of land use and land cover

changes: A systematic approach to future research development and planning. In Journal

of

King Saud University - Science (Vol. 36, Issue 7). Elsevier B.V.

https://doi.org/10.1016/j.jksus.2024.103262

Asif, M., Kazmi, J. H., Tariq, A., Zhao, N., Guluzade, R., Soufan, W., Almutairi, K. F.,

Sabagh, A. El, & Aslam, M. (2023). Modelling of land use and land cover changes and

prediction using CA-Markov and Random Forest. Geocarto International, 38(1).

https://doi.org/10.1080/10106049.2023.2210532

Attri, P., Chaudhry, S., & Sharma, S. (2015). International Journal of Current Engineering

and Technology Remote Sensing & GIS based Approaches for LULC Change Detection

A Review. In 3126| International Journal of Current Engineering and Technology (Vol. 5,

Issue 5). http://inpressco.com/category/ijcet

Dutta, D., Rahman, A., Paul, S. K., & Kundu, A. (2020). Estimating urban growth in peri

urban areas and its interrelationships with built-up density using earth observation datasets.

Annals of Regional Science, 65(1), 67–82. https://doi.org/10.1007/s00168-020-00974-8

Giller, K. E., Beare, M. H., Lavelle ’, P., Izac, A.-M. N., & Swift, M. J. (1997). Applied

Soil Ecology Agricultural intensification, soil biodiversity and agroecosystem function. In

Applied Soil Ecology (Vol. 6).

Gyamfi, C., Ndambuki, J. M., & Salim, R. W. (2016). Hydrological responses to land

use/cover changes in the Olifants Basin, South Africa. Water (Switzerland), 8(12).

https://doi.org/10.3390/w8120588

Kamaraj, M., & Rangarajan, S. (2022). Predicting the future land use and land cover

changes for Bhavani basin, Tamil Nadu, India, using QGIS MOLUSCE plugin.

Environmental

Science

and

Pollution

https://doi.org/10.1007/s11356-021-17904-6

Research,

(57),

–86348.

Lambin, E. F. , G. H. J. ,& L. E. (2001). Dynamics of land-use and land-cover change in

tropical regions. Annual Review of Environment and Resources, 28(1), 205–241.

Mondal, M. S., Sharma, N., Kappas, M., & Garg, P. K. (2015). Critical assessment of land

use land cover dynamics using multi-temporal satellite images. Environments - MDPI,

(1), 61–90. https://doi.org/10.3390/environments2010061

Pielke, R. A. (2005). Land use and climate change. Science, 310(5754), 1625–1626.

https://doi.org/10.1126/science.1120529

Probeck, M., Colgan, A., Krimly, T., Zárate, M., & Schneider, K. (2016). Land Use and

land cover. Regional Assessment of Global Change Impacts: The Project GLOWA-Danube,

(2), 83–89. https://doi.org/10.1007/978-3-319-16751-0_9

Salman, S. A., Shahid, S., Mohsenipour, M., & Asgari, H. (2018). Impact of landuse on

groundwater quality of Bangladesh. Sustainable Water Resources Management, 4(4),

–1036. https://doi.org/10.1007/s40899-018-0230-z

Singh, S. K., Mustak, S., Srivastava, P. K., Szabó, S., & Islam, T. (2015). Predicting Spatial

and Decadal LULC Changes Through Cellular Automata Markov Chain Models Using

Earth Observation Datasets and Geo-information. Environmental Processes, 2(1), 61–78.

https://doi.org/10.1007/s40710-015-0062-x

Singh Sisodia, P., & Tiwari, V. (n.d.). Analysis of Supervised Maximum Lil

Classification for Remote Sensing Image.

Tahir, Z., Haseeb, M., Mahmood, S. A., Batool, S., Abdullah-Al-Wadud, M., Ullah, S., &

Tariq, A. (2025). Predicting land use and land cover changes for sustainable land

management using CA-Markov modelling and GIS techniques. Scientific Reports, 15(1),

–23. https://doi.org/10.1038/s41598-025-87796-w

ZEPPEL, M. (2011). Ecological Climatology: Concepts and Applications, Second Edition.

Austral Ecology, 36(5), e20–e21. https://doi.org/10.1111/j.1442-9993.2010.02195.x

Downloads.

Published

2025-06-09

Issue

Section

Articles

How to Cite

SPATIOTEMPORAL DYNAMICS AND FUTURE PROJECTION OF LAND USE AND LAND COVER IN THE GHOD RIVER BASIN (2001–2040). (2025). Phoenix: International Multidisciplinary Research Journal ( Peer Reviewed High Impact Journal ), 3(2), 182-194. https://doi.org/10.65009/yn0bjq07